期刊文献+

基于LS-SVM的天线指向模型研究 被引量:2

Study of antenna pointing model based on least-square support vector machines
下载PDF
导出
摘要 提出了一种新的基于最小二乘支持向量机的天线指向模型(LSSVM-PM)。不同于线性指向模型(Linear-PM)对天线指向偏差的分项进行代数相加,LSSVM-PM是对影响天线指向的因素进行考察,将因素变量作为支持向量机的输入,指向偏差作为输出,模型的求解是将原空间非线性地映射到一个高维的特征空间,然后在此空间中引入最小二乘法进行优化求解。因此,LSSVM-PM模型可解决天线指向偏差的非线性问题,同时将影响指向的外部因素考虑周全。实验数据模拟结果表明,该模型与线性模型相比,指向预测精度提高了17.36%,能更有效地提高天线的指向精度。最后,对LSSVM-PM模型的参数选择、学习样本数量及分布对模型精度的影响进行了分析。 A new antenna pointing model (LSSVM-PM) based on Least-square support vector machines (LS-SVM) is proposed in this paper. Different from the linear pointing model (Linear-PM) carring out algebraic addition to the sub-item of antenna pointing offset, the LSSVM-PM analyzs the factors affect antenna pointing, and it takes these factor variables as the LS-SVM inputs and antenna pointing offset as the outputs. The LSSVM-PM is established by the input space mapped non-linearly to a higher dimensions feature space, and in the feature space a optimization problem can be solved by the least squares method. So nonlinear problem of pointing error can be handled and all environment variables can be considered. Simulation result for testing datum shows that the LSSVM-PM can improve pointing precision by 17.36% by contrast with the Linear-PM. Finally, the LSSVM-PM accuracy influenced by model parameter, the number and distributing of learning samples is analyzed.
出处 《电波科学学报》 EI CSCD 北大核心 2007年第5期804-809,共6页 Chinese Journal of Radio Science
关键词 天线 指向误差 最小二乘支持向量机 建模 预测分析 antenna, pointing error, least-square support vector machines, model construction, predict analysis
  • 相关文献

参考文献11

  • 1Levy R. Structural Engineering of Microwave Antennas [M]. America: IEEE Press, 1996.
  • 2Meeks, M L, et al.. The Pointing Calibration of the Haystack Antenna[J]. IEEE AP, 1968, 1 (16): 746-751.
  • 3N R Vandenberg & W E Himwieh. VLBI System Documentation Mark IV Field System[M]. America: NASA Goddard Space Flight Center, 1997, Ver. 9.3.
  • 4Vapnik V. , Statistical Learning Theory [M]. America: JohnWiley, 1998.
  • 5Cortes C, Vapnik V. Support Vector Networks [J]. Machine Learning, 1995, 20(3): 273-295.
  • 6张浩然,韩正之,李昌刚.支持向量机[J].计算机科学,2002,29(12):135-137. 被引量:72
  • 7Suykens J A K. Nonlinear modelling and support vector machines[J]. IEEE Transactions on Instrumentation and Measurement Technology, 2001, 1: 287-294.
  • 8Suykens J A K, Gestel T V, et al.. Least Squares Support Vector Machines[M]. River Edge: World Scientific, 2002.
  • 9Nobuharu UKITA. Thermal Effects on the Pointing of the Nobeyama 45-m Telescope [J]. Publ. Natl. Astron. Obs. Japan, 1999,5(3):139-147.
  • 10Greve, A, Panis, J -F, Thum, C. The pointing of the IRAM 30-m telescope [J]. A&A. 1996, Suppl. Ser. 115(2): 379-385.

二级参考文献2

共引文献77

同被引文献24

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部