期刊文献+

基于高阶统计量的MIMO系统辨识与信号分离算法 被引量:1

Identification and source separation algorithm for MIMO system based on higher order statistics
下载PDF
导出
摘要 将高阶累计量与JADE算法相结合,利用高阶统计量能辨识非最小相位系统和JADE算法比SVD收敛性好的特点,提出了一种在频域对MIMO系统进行辨识和信号分离的算法。在满足信号间相互独立的情况下,采用互四阶累计量解决了排序问题,仿真实验表明了该方法的有效性。 Combining higher order statistics that can identify non-minimum phase system with JADE algorithm which is better than SVD in convergence, an algorithm was proposed to identify and separate mixed sources for MIMO system in frequency domain. Under the condition that the sources are independent from each other, the permutation problem was solved by using cross fourth-order statistics. Simulations show that the proposed algorithm is feasible and practical.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第6期1436-1440,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 吉林省科技厅杰出青年科学研究计划基金资助项目(吉科合字第20010120号)
关键词 信息处理技术 MIMO系统 高阶统计量 信号分离 information processing technology MIMO system higher order statistics source separation
  • 相关文献

参考文献12

  • 1Matosuok K, Nakashima S. Minimal distortion principle for blind source separation[C] // In Proc ICA, 2001:722-727.
  • 2Douglas S C, Sun X. Convolutive blind separation of speech mixtures using the natural gradient [J]. Speech Commun,2003,39(1/2) :65-78.
  • 3Amari S, Douglas S C. Multichannel blind disconsolation and equalization using the natural gradient[C] // In Proc IEEE Workshop Signal Processing Advances Wireless Communications, 1997:104-107.
  • 4Schobben L, Sommen W. A frequency domain blind signal separation method based on decorrelation[J]. IEEE Trans on Signal Processing , 2002,50: 1855- 1865.
  • 5Sawada H, Mukai R, Araki S, et al. Polar coordinate based on no linear function for frequency domain blind source separation [J]. IEICE Trans Fund, 2003, E86-1 (3) : 590-596.
  • 6Asano F, Ikeda S, Ogawa M. A combined approach of array processing and independent component analysis for blind separation of acoustic signals[C] // In Proc ICASSP, 2001: 2729-2732.
  • 7Smaragdis P. Blind separation of convolved mixtures in the frequency domain[J]. Neurocomput, 1998, 22:21-34.
  • 8Hiroshi Swada, Ryo Mukai. A robust and precise method for solving the permutation problem of frequency-domain blind separation [J]. IEEE Trans Speech and Audio Processing, 2004 , 12 (5) : 530- 538.
  • 9Chen Bing-ning, Athina P, Petropulu frequency domain blind MIMO system identification based on second-and higher order statistics[J]. IEEE Trans Signal Processing, 2001,49(8) : 1677-1688.
  • 10张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211

二级参考文献51

  • 1[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 2[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 3[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 4[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 5[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 6[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 7[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 8[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 9[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.
  • 10[10]Cardoso J F,Souloumiac A.Blind beamfomrming for non-Gaussian signals[J].lEE Proc.-F,1993,140:362-370.

共引文献253

同被引文献11

  • 1李玲,王宏志,王艳玲,王晓梅.平稳噪声中的谐波恢复[J].长春工业大学学报,2005,26(1):34-37. 被引量:2
  • 2Donoho D. L. Denoising by soft-thresholding[J]. IEEE Trans. Inf. Theory, 1995,41 : 613-627.
  • 3Goodman T. N. T. , Lee S. L. Wavelets of multi-plicity[J]. Trans. on Amer. Math. Soc., 1994, 342:307-324.
  • 4Geronimo J. S. , Hardin D. P. Fractal functions and wavelet expansions based on several scaling functions[J]. J. of Approx Theory, 1994,78; 373- 401.
  • 5Geronimo J. S. Construction of orthogonal wavelets using fractal interpolation functions [ J ]. SIAM Journal Math. Analysis, 1996,27(4) : 1158-1192.
  • 6Strela V. The application of multiwavelet filter banks to signal and image processing[J]. IEEE Trans. on Image Pro-cessing, 1999,8(4) : 548-563.
  • 7Xia X. G. Design of prefilters for discrete multi-wavelet transform[J]. IEEE Trans. on SP, 1996, 44(1) :25-35.
  • 8Qingtang Jang. Orthogonal multiwavelets with optimum time-frequency resolution[J]. IEEE Trans. on SP, 1998,46(4) : 830-884.
  • 9Strela V. Multiwavelets.. theory and application[D]: [Ph D Thesis]. California.. Atanford University, 1996.
  • 10Chang S. G. , Yu B. , Martin V. Adaptivewavelet thresholding for image denoising and compression [J]. IEEE Transactions on Image Processing,2000, 9(9) : 1532-1546.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部