摘要
本文借助于Calderón-Zygmund分解理论和Hardy空间的原子分解理论,把实值上的几个结果推广到了Banach值的情形,得到了theta(t)型奇异积分算子在Banach值加权空间上的有界性,以及在Banach值加权Hardy空间上的有界性.这些结果是theta(t)型奇异积分算子有界性的完善和补充.
In this paper, with the help of Calderon-Zygmund decomposition and atomic decomposition of Hardy spaces, the boundedness of the theta(t)-type singular integral operators are discussed. It is showed that the theta (t)-type singular integral operators are bounded on weighted Banach spaces LB,ω^P (R^n) (1≤p〈+∞) and Hardy Banach spaces HB,ω^1( R^n), These results are the consummate of the theta(t)-type singular integral operators in several real variables.
出处
《数学杂志》
CSCD
北大核心
2007年第6期687-694,共8页
Journal of Mathematics