期刊文献+

心脏MRI图像快速分割方法 被引量:1

A FAST APPROACH TO CARDIAC MRI IMAGE SEGMENTATION
下载PDF
导出
摘要 在分析心脏MR图像特点的基础上,提出了先对心脏MRI图像进行K均值聚类,把K均值聚类后的图像作为特征图像,在特征上用Song和Chan提出的快速分割方法进行粗分割,再用粗分割的曲线作为水平集的初始曲线,在心脏MRI图像上用Chan和Vese方法进行细分割的心脏MR图像分割方法。并对Song和Chan快速算法中扫描图像的区域进行了改进,提高了分割速度。分割实验证明,用该方法能够快速、准确地分割心脏MRI图像。 Based on the analysis of the characteristics of cardiac MRI image, a fast segmentation algorithm for cardiac MRI image is proposed. Firstly,the cardiac MRI image is processed by K-means clustering, and the image processed is taken as the new feature for rough seg- mentation by Song and Chan method. Secondly,the curve of rough segmentation acts as the initiative curve of level sets, and Chan and Vese method is applied to the delicate segmentation of cardiac MRI image. In order to improve the segmentation speed, Song and Chan method is improved by reducing the scanning area of image. The experiment shows that the cardiac MRI image can be segmented fast and accurately by the approach proposed.
作者 段先华
出处 《计算机应用与软件》 CSCD 北大核心 2007年第11期37-40,共4页 Computer Applications and Software
基金 香港特区政府研究资助局资助项目(CUHK/4180/01E CUHK/1/00C)
关键词 水平集 Chan和Vese方法 K均值聚类 心脏MRI图像分割 Level set Chan and Vese method K-means clustering Cardiac M RI Segmentation
  • 相关文献

参考文献13

  • 1Osher S, Sethian J A. Fronts propagating with curvature dependent speed : Algorithms based on hamilton-jacobi formulation [ J ]. Journal of Computational Physics, 1988,79 ( 1 ) : 12 - 49.
  • 2Chan T, Wong C K. Total variation blind deconvolution [ J ]. IEEE Transactions on Image Processing, 1998,7 (3) :370- 375.
  • 3Sochen N, Kimmel R, Malladi R. A general frameworkn for low level vision [ J ]. IEEE Transactions on Image Processing, 1998,7 ( 3 ) : 310 - 318.
  • 4Chan T F,Vese L A. Image segmentation using level sets and the piecewise constant Mumford_Shah model[ R 1. Technical report, UCLA Dept of Math, CAM 00 - 14,2000.
  • 5Chan T F, Vese L A. Active contours without edges[ J ]. IEEE Transactions on Image Processing,2001,10(2) :266-277.
  • 6Guillermo Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge University,2001.
  • 7Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects [ J ]. IEEE Trans. Pattern Anal. Machine Intel1,2000,22 ( 3 ) :266 - 280.
  • 8Mansouri A R, Sirivong B, Konrad J. Multiple motion segmentation with level sets[ J]. Proe. SPIE Image Video Commun. Processing,2000:584 - 595.
  • 9Mansouri A R, Konrad J. Minimum description length region tracking with level sets [ J ]. Proc. SPIE Image Video Commun. Processing, 2000:515 -525.
  • 10Mumford D, Shah J. Boundary detection by minimizing functions [ C ]. Proceedings of Conference Computer Vision and Pattern Recognition, San Francisco, 1985:41 - 44.

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部