期刊文献+

L-λ-G族模糊蕴涵算子的性质 被引量:2

Property of Family L-λ-G of Fuzzy Implication Operator
下载PDF
导出
摘要 给出了三族模糊蕴涵算子分别称它们为L-λ-0(λ∈[21,1])、L-λ-G(λ∈[0,1])与L-λ-0-λ-G(λ∈[0,1])族模糊蕴涵算子。L-λ-0族算子包括Lukasiewicz(简称RLu)算子与R0算子,L-λ-G族算子包括RLu算子与Go。del(简称RG)算子,L-λ-0-λ-G族算子包括RLu算子、R0算子与RG算子。本文主要讨论L-λ-G(λ∈[0,1])族模糊蕴涵算子的伴随算子及其正则性。 In this paper we propose three family of fuzzy implication operators, they are called families L-λ- 0,λ∈ [0,1]of fuzzy implication operators, families L-λ-G,λ∈ [0,1]of fuzzy implication operators and families L-λ-0-λ-G,λ∈[0, 1]of fuzzy implication operators, respectively. L-λ-0 contains I.ukasiewicz (for short RLu) operator and R0 operator, L-λ-G contains RLu operator and Godel (for short RG) operator, L-λ-0-λ-G contains RI; operator, R0 operator and RG operator. The residue and regularity of family L-λ-G of fuzzy implication operator are mainly discussed.
出处 《模糊系统与数学》 CSCD 北大核心 2007年第5期8-13,共6页 Fuzzy Systems and Mathematics
基金 山东省自然科学基金资助项目(Y2003A01)
关键词 蕴涵算子族 伴随算子 正则性 Family of Implication Operator Residue Operator Regularity
  • 相关文献

参考文献8

  • 1Hajek P.Metamathematics of fuzzy logic[M].London:Kluwer Academic Publishers,1998.
  • 2Baczynski M.Residual implication revisited,Notes on the Smets-Magrez theorem[J].Fuzzy Set and Systems,2004,145(2):267-278.
  • 3Pei D W.R0-implication:characteristics and applications[J].Fuzzy Set and systems,1995,69:141-156.
  • 4Zadeh L A.Outline of new approach to the analysis of complex systems and decision processes[J].IEEE Trans.On Systems,Man and Cybernetics,3:28-33.
  • 5Klement E P,Navara M.Propositional fuzzy logics based on Frank t-norms:Acomparison[A].Dubois D.Fuzzy sets,logics and Reasoning about Knowledge[C].Kluwer Academic Publishers,1999.
  • 6Zhang X H,He H C,Xu Y.Fuzzy logic system of based on Schweizer-Sklar T-norm[J].China Science (E)information Science,2006,35(12):1314-1326.
  • 7Whalen T.Parameterized R-implications[J].2003,134:231-281.
  • 8张兴芳,孟广武,张安英.蕴涵算子族及其应用[J].计算机学报,2007,30(3):448-453. 被引量:42

二级参考文献3

共引文献41

同被引文献33

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部