期刊文献+

基于良序子集的最近邻垄行图像识别算法 被引量:3

A New Algorithm for Identifying the Crop Row Image Based on Subsets and Nearest Neighbor Rule
下载PDF
导出
摘要 根据田间作物垄点像素矩阵特点,基于行向量目标像素良序子集,先进行垄点子集预处理,然后运用最近邻判别准则搜寻每个垄点像素的最近邻点。通过设置最近邻搜索方向角和最近邻阈值,对断垄和较大面积的杂草等噪声影响进行控制。实验结果表明,与传统的最近邻算法比较,该算法的准确性和鲁棒性均得到提高,时间复杂度较小,对农田视觉导航实际应用有一定价值。 The conventional nearest neighbor(CNN) classifiers provide a simple approach with good robustness, which is guaranteed to converge to a result, but it has some shortcomings such as aimless searching, much time consumption, and an unexpected infection by noises and so on. In this paper, a new approach to detect crop rows was proposed, which was based on the well-ordered subsets of the objective in row vectors of image matrix. And the nearest neighbor search angle and the nearest neighbor distance which are considered important control factors were embedded in the CNN. Combined with the inherent property of crop pixels, the nearest neighbor query can be limited in a small suitable range. The experimental results indicate the algorithm was of good robustness and accuracy compared with the CNN, and it could avoid the impact of weeds with small time consumption.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第11期2048-2051,共4页 Journal of Image and Graphics
基金 国家自然科学基金项目(60574029)
关键词 良序集 最近邻法 垄行识别 视觉导航 well-ordered, nearest neighbor rule, crop rows indentification, machine vision navigation
  • 相关文献

参考文献10

  • 1Marchant J A,Brivot R.Real-time tracking of plant rows using a Hough transform[J].Real-time Imaging,1995,1 (5):363-371.
  • 2Sφggaard H T,Olsen H J.Determination of crop rows by image analysis without segmentation[J].Computers and Electronics in Agriculture,2003,38(2):141-158.
  • 3Karacah B,Ramanath R,Snyder W E.A comparative analysis of structural risk minimization by support vector machines and nearest neighbor rule[J].Pattern Recognition Letters,2004,1(5):63-71.
  • 4Liu D.A strong lower bound for approximate nearest neighbor searching[J].Information Processing Letters,2004,9(1):23-29.
  • 5Bandyopadhyay S,Maulik U.Efficient prototype reordering in nearest neighbor classification[J].Pattern Recognition,2002,35(12):2791-2799.
  • 6Zhang H B,Sun G Y.Optimal reference subset selection for nearest neighbor classification by tabu search[J].Pattern Recognition,2002,35(7):1481-1490.
  • 7魏传锋,庞彧,李运泽,王浚,于涛.改进的最近邻法在基于事例推理中的应用[J].系统仿真学报,2005,17(5):1045-1047. 被引量:13
  • 8边肇祺 张学工.模式识别[M].北京:清华大学出版社,2004..
  • 9Lee K K,Schiffman J,Zheng B H,et al.Round-Eye:A system for tracking nearest surrounders in moving object environments[J].The Journal of Systems and Software,2007,80(3):176-183.
  • 10Keicher R,Seufert H.Automatic guidance for agricultural vehicles in Europe[J].Computers and Electronics in Agriculture,2000,25(1-2):169-194.

二级参考文献6

共引文献47

同被引文献36

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部