期刊文献+

不可压缩N-S方程的稳定分步算法及耦合离散 被引量:2

PRESSURE STABILIZED FRACTIONAL STEP ALGORITHM FOR INCOMPRESSIBLE N-S EQUATIONS AND COUPLED FINITE ELEMENT AND MESHFREE DISCRETIZATION
下载PDF
导出
摘要 在有限增量微积分(finite increment calculus,FIC)的理论框架下,通过引入一个附加变量,发展了压力稳定型分步算法,有效改善了经典分步算法的压力稳定性,同时还避免了标准FIC方法中存在的空间高阶导数的计算.为保证数值方法同时具有较快的计算速度和较好的健壮性,发展了有限元与无网格的耦合空间离散方法.该方案可在网格发生扭曲的区域采用无网格法空间离散以保证求解的精度和稳定性,而在网格质量较好的区域以及本质边界上保留使用有限元法空间离散以提高计算效率和便于施加本质边界条件.方腔流考题的数值模拟结果突出地显示了所发展的压力稳定型分步算法比经典分步算法具有更好的压力稳定性,能够有效消除速度-压力插值空间违反LBB条件而导致的压力场的虚假数值振荡.平面Poisseuille流动和一个典型型腔充填过程的数值模拟结果,表明了发展的耦合离散方案相对于单一的有限元法和单一的无网格法在综合考虑计算效率和算法健壮性方面的突出优点. By introducing an additional variable in the framework of the Finite Increment Calculus(FIC) theory, a pressure stabilized fractional step algorithm is developed in this paper with enhanced pressure stability in comparison with the classic one. In the algorithm, the calculation of the high order spatial derivatives as required in the standard FIC procedure is avoided. To ensure superior overall performance of the proposed numerical scheme in accuracy, efficiency and robustness, a coupled finite element and meshfree method is developed for the spatial discretization and interpolation approximation, in which the meshfree approximation is adopted in the region where the mesh is distorted to preserve the accuracy and robustness of numerical solutions, while the finite element approximation is employed in the region where the quality of the mesh is acceptable and on the boundaries where essential boundary conditions of flow problems are imposed to ensure high computational efficiency and proper imposition of the essential boundary conditions. Numerical results for the lid-driven cavity flow problem demonstrate that the pressure stability of the proposed pressure stabilized fractional step algorithm is better than that of the classic one, and the algorithm can get rid of spurious oscillations in the resulting pressure field induced by the incompatible interpolation approximations for the velocity and pressure fields in violating the LBB condition. Two example problems, i.e. the plane Poisseuille flow and the injection molding problems are calculated to demonstrate the superiority of the proposed coupled finite element and meshfree method over either the finite element or meshfree methods in the overall performance.
出处 《力学学报》 EI CSCD 北大核心 2007年第6期749-759,共11页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10590354 10672033 10272027) 国家973(2002CB412709)资助项目.~~
关键词 分步算法 不可压缩N—S方程 LBB条件 压力稳定性 无网格法 FIC fractional step algorithm, incompressible N-S equations, LBB condition, pressure stability meshfree, FIC
  • 相关文献

参考文献20

  • 1Huerta A, Vidal Y, Villon P . Pseudo-divergence-free element free Galerkin method for incomepressible fluid flow. Comput Methods Appl Mech Engrg, 2004, 193:1119-1136.
  • 2段庆林,李锡夔.不可压缩Stokes流动的PSPG无网格法[J].计算力学学报,2007,24(2):192-196. 被引量:4
  • 3Hughes T JR, Franca LP, Balestra M. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi Condition: A stable Petrov Galerkin formulation of the Stokes problem accommodating equal-order interpolations . Comput Methods Appl Mech Engrg, 1986, 59:85-99.
  • 4Tezduyar TE, Mittal S, Eray S, et al. Incompressible flow computations with stablilized bilinear and linear equal-order-interpolation velocity-pressure element. Cornput Methods Appl Mech Engrg, 1992, 95:221N242.
  • 5Onate E . A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput Methods Appl Mech Engrg, 2000, 182: 355-370.
  • 6Guermond JL, Quartapelle L. On stability and convergence of projection methods based on pressure Poisson equation. Int J Numer Methods Fluid, 1998, 26:1039-1053.
  • 7Codina R, Blasco J. A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput Methods Appl Mech Engrg, 1997,143: 373-391.
  • 8Huerta A, Fernandez-mendez S. Enrichment and coupling of the finite element and meshless methods. Int J Numer Methods Engrg, 2000, 48:1615-1636.
  • 9Chorin AJ. Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 1968, 22:742-762.
  • 10Chorin AJ. On the convergence of discrete approximation to the Navier-Stokes equations . Mathematics of Computation, 1969, 23:341-353.

二级参考文献30

  • 1Hirt C W, Amsden A A, Cook J L. An arbitrary Lagrangian Eulerian computing method for all follow speeds[J]. J Comput Phys, 1974 14:105~136
  • 2Hughes T J R, Liu W K, Zimmermann T K. Lagrangian-Eulerian finite element formulation for incompressible viscous flows[J]. Comput Methods Appl Mech. Engrg, 1981 29:329~349
  • 3Belytschko T, Liu W K, Moran B. Nonlinear finite elements for continua and structure[M]. New York: John Wiley & Sons, 2000. 393~449
  • 4Braess H, Wriggers P. Arbitrary Lagrangian- Eulerian finite element analysis of free surface flow[J]. Comput Methods Appl Mech Engrg, 2000, 190: 95~109
  • 5Dussan V E B. On the spreading of liquids on solid surface: static and dynamic contact lines[J]. Ann Rev Fluid Mech, 1979, 11:371~400
  • 6Townsend P, Webster M F. An algorithm for the three-dimensional transient simulation of non-Newtonian fluid flows[A]. In: Pande G N, Middleton J, Transient/Dynamic Analysis and constitutive Laws for Engineering Materials, Vol. 2[C]. Swansea , Chapman & Hall, 1987. 1~11
  • 7Zienkiewicz O C, Taylor R L. The Finite Element Method: 5th ed, Vol. 3[M]. Barcelona: Butterworth-Heinemann, 2000. 13~63
  • 8Li Xikui, Han Xianhong, Pastor M. An iterative stabilized fractional step algorithm for finite element analysis in saturated soil dynamics[J]. Comput Methods Appl Mech Engrg, 2003, 192: 3845~3859
  • 9Zienkiewicz O C, Liu Y C, Huang G C. Error estimates and convergence rates for various incompressible elements[J]. Int J Numer Methods Engrg,1989 28:2191~2202
  • 10HARLOW F H, WELCH J E. Numerical study of large-amplitude free-surface motions [J]. Phys Fluids, 1966, 9(5) :842-851.

共引文献9

同被引文献33

  • 1胡世祥,李磊,佘春东,唐智礼.二维Euler方程无网格算法的精度分析[J].计算力学学报,2005,22(2):232-236. 被引量:6
  • 2孙迎丹,王刚,叶正寅.AUSM^+-up格式在无网格算法中的推广[J].空气动力学学报,2005,23(4):511-515. 被引量:11
  • 3程荣军,程玉民.带源参数的二维热传导反问题的无网格方法[J].力学学报,2007,39(6):843-847. 被引量:10
  • 4HUGHES T J R, FRANCA L P, BALESTRA M. A new finite element formulation for computational fluid dyna- mics: V. Circumventing the Babuska-Brezzi Condition: A stable Petrov-Galerkin formulation of the Stokes pro- blem accommodating equal-order interpolations[J]. Comput. Methods Appl. Mech. Engrg., 1986(59): 85- 99.
  • 5CODINA R, BLASCO J. A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation[J]. Comput Methods Appl. Mech. Engrg., 1997(143): 373-391.
  • 6ONATE E. A stabilized finite element method for in- compressible viscous flows using a finite increment cal- culus formulation[J]. Comput Methods Appl. Mech. Engrg., 2000(182): 355-370.
  • 7ONATE E. Derivation of stabilized equations for adve- etive-diffusive transport and fluid flow problems[J]. Comput. Methods Appl. Mech. Engrg., 1998(151): 233- 267.
  • 8ONATE E, GARCIA J, IDELSOHN S. Computation of the stabilization parameter for the finite element solu- tion of advective-diffusive problems[J]. International Journal of Numerical Methods Fluids, 1997(25): 1385- 1407.
  • 9ONATE E, MANZAN M. A general procedure for de- riving stabilized space-time finite element methods for advective-diffusive problems[J]. International Journal of Numerical Methods Fluids, 1999(31): 203-221.
  • 10ERTURK E, CORKE TC, GOKCOL C. Numerical so- lutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers[J]. International Journal of Numerical Methods Fluids, 2005(48): 747-774.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部