期刊文献+

基于模糊观测器混沌系统的广义投影同步 被引量:2

Generalized Projective Synchronization of Chaotic Systems Based on Fuzzy Observer
下载PDF
导出
摘要 基于混沌系统的T-S模糊模型,提出了混沌系统广义投影同步问题的控制方法。该方法利用线性矩阵不等式技术,把混沌系统的广义投影同步问题设计为模糊状态观测器设计问题,用Matlab软件包可以很容易对线性矩阵不等式求解。该方法可以通过适当选取控制增益对响应系统的动力学比例尺度任意拉伸或压缩。通过对Lorenz系统的数值模拟,表明了该方法的有效性。 Based on the Tagaki-Sugeno (T-S)fuzzy model of chaotic systems, a control method of the generalized projective synchronization problem of chaotic systems is proposed. The generalized projective synchronization problem is allowed to be expressed as a fuzzy state observer design in terms of linear Matrix inequalities, which can be solved numerically using readily available Matlab software packages. The scale of the dynamics of the response system can be arbitrarily amplified or reduced through selecting suitable control gains. The numerical simulation results of the Lorenz system show the effectiveness of the proposed method.
作者 赵磊 郑永爱
出处 《控制工程》 CSCD 2007年第6期622-624,共3页 Control Engineering of China
基金 扬州大学自然科学基金资助项目(KK0513109 2006CXJ005)
关键词 混沌同步 T-S模糊模型 线性矩阵不等式 广义投影同步 chaotic synchronization T-S fuzzy model linear matrix inequality generalized projective synchronization
  • 相关文献

参考文献10

  • 1Pcora L M, Carrol T L. Synchronization in chaotic systems [J]. Phys Rev Lett, 1990,64(8) :821-823.
  • 2Mainieri R, Rehacek J. Projective synchronization in three dimensional chaotic system[J]. Phys Rev Lett, 1999, 82(15) :3042-3045.
  • 3Xu D L, Wee L G, Li Z G. Criteria for the oeeurrence of projective synchronization in chaotic systems of arbitrary dimension [J]. Physics Letters A,2002,305(3) : 167-172.
  • 4Xu D L, Chin Y C, Li C P . A necessary condition of projective synchronization in discrete-time systems of arbitrary dimensions[J]. Chaos Solitons and Fractals, 2004,22(1) : 175-180.
  • 5Li Z G, Xu D L. Stability criterion for projective synchronization in three-dimensional chaotic systems [J]. Physics Letters A, 2001,282 (3) : 175-179.
  • 6Yah J P , Li C P. Generalized projective synchronization of a unified chaotic system [J]. Chaos Solitons and Fractals, 2005,26 (4): 1119- 1124
  • 7Li C p,yan J P, Generalized projective synchronization of the cascade synchronization approach [J], Chaos Solitons and Fractals, 2006, 30 (1) : 140-146.
  • 8王宏伟,顾宏.混沌系统的快速模糊控制算法[J].控制工程,2005,12(4):310-312. 被引量:4
  • 9Kazuo T, Takayuki I,Wang H O. A unified approach to controlling chaos via an LMI-based fuzzy control system design [J]. IEEE Trans Circ Syst, 1998,45(10) : 1021-1040.
  • 10杨志红,常凤云,姚琼荟.基于T-S模糊模型的离散混沌系统变结构控制[J].控制工程,2007,14(2):161-163. 被引量:3

二级参考文献14

  • 1[1]Chen G.Controlling chaos and bifurcations in engineering systems[M].New York:CRC Press,1999.
  • 2[2]Ott E,Grebogi C,Yorke J A.Controlling chaos[J].Phys Rev Lett,1990,64(11):1196-1199.
  • 3[3]Takagi T,Sugeno M.Fuzzy identification of systems and its application to modeling and control[J].IEEE Trans Syst Man Cybern,1985,15(1):116-132.
  • 4[4]Feng G,Chen G.Adaptiv control of discrete-time chaotic system:a fuzzy control approach[J].Chaos Solitons and Fractals,2005,23 (4):459-467.
  • 5[5]Yang Z H,Yao Q H,Yang C H.Control and sychronization of Henon chaos via a novel variable structure control[J].Dynamics of Continuous Discrete and Impulsive Systems Series B,2004,11(6):665-672.
  • 6[6]Henon M.A two dimensional map with a strange attractor[J].Commun Math Phys,1976,50(1):69-73.
  • 7[7]Lozi J.Un attracteur etrange du type attracteur de Henon[J].J Phys (paris),1987,39(1):9-11.
  • 8Ott E, Grebogi C, Yorke J A. Recent developments in chaotic dynamics [ J ]. IEEE Transactions on Plasma Science,1994,22( 1 ) :43-46.
  • 9Takagi T, Sugeno M. Fuzzy identification of system and its application to modeling and control[J]. IEEE Trans on System Man Cybernet, 1985, 15(1):16-32.
  • 10Sugeno M, Takahiro Y. A fuzzy logic-based approach to qualitative modeling [ J ]. IEEE Trans on Fuzzy Systems,1993,1(1) :7-31.

共引文献5

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部