期刊文献+

基于概率鲁棒的PID控制器设计方法研究 被引量:4

A PID Controller Design Method Based on Probablistic Robustness
下载PDF
导出
摘要 针对具有实参数不确定性的热工过程,基于概率鲁棒方法,提出一种PID控制器设计方法。根据被控对象模型的参数摄动状态,计算闭环系统满足各条性能设计要求的概率,并对其进行综合作为优化算法的目标函数,利用遗传算法对PID控制器参数进行优化,用蒙特卡罗实验对控制系统进行鲁棒性检验。针对4种典型的热工过程进行了仿真试验,并与基于标称参数的设计方法以及传统的整定方法进行了比较。仿真结果表明,基于概率鲁棒的PID控制器设计方法对模型参数不确定性具有较好的鲁棒性,在被控对象存在一定的不确定性时,系统能以最大的概率满足设计要求,因此适用于具有参数不确定性的典型热力过程的控制。 A PID controller design method based on probabilistic robustness was presented for thermal process with varied parameters. Based on model uncertainties, the probability of closed system meeting every item of dynamic performance requirements was calculated and synthesized as the cost function of genetic algorithms which was used to optimize the parameters of PID controller. Monte-Carlo experiment was applied to test the control system robustness. Simulation for four kinds of typical thermal process was carried out. Comparison with the PID design method based on nominal conditions and some traditional tuning methods indicates that the method presented has better robustness, the systems could satisfy the design requirements in a maximal probability, so this method can be applied to typical thermal process with parameter uncertainty.
出处 《中国电机工程学报》 EI CSCD 北大核心 2007年第32期92-97,共6页 Proceedings of the CSEE
关键词 PID控制器 热工过程 概率鲁棒 蒙特卡罗实验 PID controller thermal process probabilistic robustness Monte-Carlo experiment
  • 相关文献

参考文献19

  • 1田亮,刘鑫屏,于希宁,刘吉臻.一种协调控制系统参数的鲁棒整定方法[J].热能动力工程,2006,21(1):84-87. 被引量:5
  • 2恒庆海,鲁婧,恒庆珠,贺家李.H_∞ 控制理论在过热汽温控制中应用的研究[J].天津大学学报,1999,32(1):6-8. 被引量:7
  • 3Nemiroskii A.Several NP-hard problems arising in robust stability analysis[J].Math Control Signals Systems,1993,22(6):99-105.
  • 4Svatopluk Poljak,Checking J R.Robust nonsingularity is NP-hard[J].Math Control Signals Systems,1993,24(6):1-9.
  • 5Braatz R.P,Young P M,Doyle J C,et al.Computational complexity of m calculation[J].IEEE Transaction on Automatic Control,1994,39(5):1000-1002.
  • 6Barmish B R.A probabilistic robustness result for a multilinearly parameterized.H∞[C].Norm Proceedings of the American Control Conference,Chicago,1992.
  • 7Polykak B T,Scherabakov P S.IEEE,Trans,Autom[J].Control,2000,45(11):2145-2150.
  • 8Chen Xinjia,Aravena J L,Zhou Kemin.Risk analysis in robust control-making the case for probabilistic robust control[C].American Control Conference,Portland,2005.
  • 9吴淮宁,蔡开元.不确定控制系统概率鲁棒性分析——自适应重要抽样法[J].控制理论与应用,2004,21(5):812-816. 被引量:6
  • 10Wang Qian,Stenge R F.Robust control of nonlinear system with parametric uncertainty[J].Automatica,2002,38(9):1591-1599.

二级参考文献33

共引文献632

同被引文献32

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部