摘要
由细胞自动机出发提出一个传染病流行的非线性动力学模型,由计算机数值模拟,应用自组织临界理论分析结果,发现发病率和治愈率均为50%时存在着分界点.在分界点两侧,患病体集团分布和传染持续时间分布分别服从指数律和幂律,免疫体的分布具有不同的分数维.
A nonlinear model for the dynamics behaviour of infectious diseases spread is established from cellular automation.Applying self organized criticality theory to the simulated results by computer,it has been discovered that distributions of infection patients cluster size and duration of infectious diseases spread have been divided into two regions from the points with infectived and cure rate being 50%.In the two regions the distributions obey exponent or power law respectively and there is different fractal dimension in the distribution of immunities.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
1997年第3期375-378,共4页
Journal of Inner Mongolia University:Natural Science Edition
基金
内蒙古自然科学基金
内蒙古高校科研基金
关键词
细胞自动机
自组织临界
传染病动力学
infectious diseases cellular automation self organized criticality