摘要
When incident particles impact into a sand bed in wind-blown sand movement, rebound of the incident particles and eject of the sand particles by the incident particles affect directly the development of wind sand flux. In order to obtain rebound and eject lift-off probability of the sand particles, we apply the particle-bed stochastic collision model presented in our pervious works to derive analytic solutions of velocities of the incident and impacted particles in the postcollision bed. In order to describe randomness inherent in the real particle-bed collision, we take the incident angle, the impact position and the direction of resultant action of sand particles in sand bed on the impacted sand particle as ran- dom variables, and calculate the rebound and eject velocities, angles and coefficients (ratio of rebound and eject velocity to incident velocity). Numerical results are found in accordance with current experimental results. The rebound and eject liftoff probabilities versus the incident and creeping velocities are predicted.
When incident particles impact into a sand bed in wind-blown sand movement, rebound of the incident particles and eject of the sand particles by the incident particles affect directly the development of wind sand flux. In order to obtain rebound and eject lift-off probability of the sand particles, we apply the particle-bed stochastic collision model presented in our pervious works to derive analytic solutions of velocities of the incident and impacted particles in the postcollision bed. In order to describe randomness inherent in the real particle-bed collision, we take the incident angle, the impact position and the direction of resultant action of sand particles in sand bed on the impacted sand particle as ran- dom variables, and calculate the rebound and eject velocities, angles and coefficients (ratio of rebound and eject velocity to incident velocity). Numerical results are found in accordance with current experimental results. The rebound and eject liftoff probabilities versus the incident and creeping velocities are predicted.
基金
The project was supported by the National Natural Science Foundation of China(10532040,10601022)