摘要
在研究主成分分析和基因表达式程序设计的基础上,提出一种基于主成分分析的基因表达式程序设计新算法,并将其用于采煤工作面瓦斯涌出量的预测.该算法先采用主成分分析方法对影响瓦斯涌出的变量进行降维处理,有效地减少预测模型的输入量,消除输入数据间的相关性,再用基因表达式程序设计建立采煤工作面瓦斯涌出量的预测模型.结果表明,预测结果比遗传规划和基因表达式等其他算法得到的结果具有更高的预测精度和稳定性.
Through analyzing Principal Component Analysis (PCA) and Gene Expression Programming (GEP) ,a novel GEP Algorithm based on PCA is proposed and applied to predict the amount of gas emitted from coalface. The PCA technology is utilized to preprocess the input data and to reduce the dimensionality of the feature space ,which thus improves the input factors and eliminates the correlation among the inputs. The GEP technology is then applied to construct the prediction model. The experiment results show that our algorithm is more accurate and stable than several other algorithms,i, e. Genetic Programming (GP) and GEP.
出处
《应用基础与工程科学学报》
EI
CSCD
2007年第4期569-577,共9页
Journal of Basic Science and Engineering
基金
湖北省自然科学基金(2003ABA043)
湖北省人文基地资助项目(2004B0011)