期刊文献+

GIS支持下滑坡灾害空间预测方法研究 被引量:42

GIS-based Landslide Spatial Prediction Methods,a Case Study in Cameron Highland,Malaysia
下载PDF
导出
摘要 滑坡预测在防灾减灾工作中具有重要意义,它包括空间、时间预测两个方面。基于统计模型进行区域评价与空间预测是滑坡灾害研究的重要方向,但是预测结果往往依赖样本数量和空间分布等。本文以马来西亚金马伦高原为研究区,选择高程、坡度、坡向、地表曲率、构造、土地覆盖、地貌类型、道路和排水系统作为评价因子,探讨运用地理信息系统(GIS)和遥感(RS)获取与管理滑坡灾害信息,以及热带雨林地区湿热环境下滑坡空间预测的方法。支持向量机(SVM)和逻辑(Logistic)回归模型分别应用于滑坡空间预测,结果显示平均预测精度分别为95.9%和86.2%,SVM法具有较高的描述精度,值得推荐;同时,基于SVM模型的滑坡空间预测受样本影响较小,预测结果相对比较稳定,这对于滑坡灾害区域评价与预测的快速实现具有实际意义。 Landslide prediction is very important in disaster prevention and reduction procedures, including spatial and temporal landslide prediction, and it is one of practical research fields to evaluate and predict landslide hazards using statistic analysis model, but the prediction result depends mostly on sample numbers and spatial distribution. The aim of this study is to analyze and compare the landslide prediction using different models in Cameron highland, Malaysia, and nine evaluation factors are selected, i.e. elevation, topographic slope, topographic aspect, topographic curvature, distance from lineament, land use and land cover, geomorphic characteristics, distance from road and drainage. Support vector machine (SVM) and logistic regression model are applied to landslide spatial prediction and mapping, and the results show that average prediction accuracy using logistic regression model is about 86. 2% , but 95.9% using SVM model, at the same time, the prediction result based on SVM model is more changeless, less influenced by sample numbers. So the SVM model is commended for actual applications, and it is more efficient and accurate for landslide hazard evaluation and spatial prediction.
出处 《遥感学报》 EI CSCD 北大核心 2007年第6期852-859,共8页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金项目(编号:40671130) 中国-马来西亚政府间科技合作项目(Application of Malaysia Airborne Remote Sensing Project)资助
关键词 金马伦高原 滑坡空间预测 SVM LOGISTIC回归 Cameron highland landslide spatial prediction SVM logistic regression model
  • 相关文献

参考文献18

  • 1陈剑,杨志法,刘衡秋.滑坡的易滑度分区及其概率预报模式[J].岩石力学与工程学报,2005,24(13):2392-2396. 被引量:29
  • 2兰恒星,周成虎,伍法权,王苓涓.GIS支持下的降雨型滑坡危险性空间分析预测[J].科学通报,2003,48(5):507-512. 被引量:70
  • 3兰恒星,伍法权,周成虎,王思敬.基于GIS的云南小江流域滑坡因子敏感性分析[J].岩石力学与工程学报,2002,21(10):1500-1506. 被引量:126
  • 4Binaghi E, Luze L, Madella P. Slope Instability Zonation: A Comparison Between Certainty Factor and Fuzzy Dempster-Shafer Approaches[J]. Natural Hazards, 1998, 17: 77--97.
  • 5马志江,陈汉林,杨树锋.基于支持向量机理论的滑坡灾害预测——以浙江庆元地区为例[J].浙江大学学报(理学版),2003,30(5):592-596. 被引量:31
  • 6Chung C F, Fabbri A G. Probabilistic Prediction Models for Landslide Hazard Mapping [ J]. Photogrammetric Engineering & Remote Sen.sing, 1999, 65(12) : 1388--1399.
  • 7Arora M K, Gupta A S Das, Gupta R P. An Artificial Neural Network Approach for Landslide Hazard Zonation in the Bhaglrathi(Ganga) Valley, Himalayas [ J ]. International Journal of Remote Sensing, 2004, 25 ( 3 ) : 559--572.
  • 8LEE S, Chol J, Min K. Probabilistic Landslide Hazard Mapping Using GIS and Remote Sensing Data at Boun, Korea [ J ]. International Journal of Remote Sen.sing, 2004, 25 ( 11 ) : 2037-- 2052.
  • 9LEE S. Application of Logistic Regression Model and its Validation for Landslide Susceptibility Mapping Using GIS and Remote Sensing Data [ J ]. International Journal of Remote Sensing, 2005,26(7) : 1477--1491.
  • 10Gregory C Ohlmacher, John C Regression and GIS Technology Davis. Using Multiple Logistic to Predict Landslide Hazard in Northeast Kansas, USA [ J]. Engineering Geology, 2003, 69 331--343.

二级参考文献82

共引文献531

同被引文献479

引证文献42

二级引证文献515

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部