摘要
To improve the cycle stability at high voltage and high charge/discharge rate, spherical LiNi1/3Co1/3Mn1/3O2 was coated with Al2O3 by using heterogeneous nucleation process, and the physical and electrochemical properties were studied. The SEM images show that there is a uniform coating on the modified spherical LiNi1/3Co1/3Mn1/3O2. The electrochemical tests indicate that the properties of LiNi1/3Co1/3Mn1/3O2 coated with 0.5% aluminum oxide are the best. The initial capacities are 150 and 173 mA·h/g at the rate of 1C in the voltage range of 2.7-4.3 V and 2.7-4.6 V, respectively, and the discharge capacities maintain about 99% and 85% after 30 cycles, respectively. While those of the bare LiNi1/3Co1/3Mn1/3O2 are only 90% and 75%, respectively. The CV tests of LiNi1/3Co1/3Mn1/3O2 show that Al2O3-coating can restrain the oxide-reduction peak currents fading during the charge/discharge course.
To improve the cycle stability at high voltage and high charge/discharge rate, spherical LiNi1/3Co1/3Mn1/3O2 was coated with Al2O3 by using heterogeneous nucleation process, and the physical and electrochemical properties were studied. The SEM images show that there is a uniform coating on the modified spherical LiNi1/3Co1/3Mn1/3O2. The electrochemical tests indicate that the properties of LiNi1/3Co1/3Mn1/3O2 coated with 0.5% aluminum oxide are the best. The initial capacities are 150 and 173 mA.h/g at the rate of I C in the voltage range of 2.7-4.3 V and 2.7-4.6 V, respectively, and the discharge capacities maintain about 99% and 85% after 30 cycles, respectively. While those of the bare LiNi1/3Co1/3Mn1/3O2 are only 90% and 75%, respectively. The CV tests of LiNi1/3Co1/3Mn1/3O2 show that Al203-coating can restrain the oxide-reduction peak currents fading during the charge/discharge course.
出处
《中国有色金属学会会刊:英文版》
CSCD
2007年第6期1319-1323,共5页
Transactions of Nonferrous Metals Society of China