摘要
Considering the characteristics of perovskite structure, a kinetic Monte Carlo(KMC) model, in which Born-Mayer- Huggins(BMH) potential was introduced to calculate the interatomic interactions and the bonding ratio was defined to reflect the crystallinity, was developed to simulate the growth of BaTiO3 thin film via pulsed laser deposition(PLD). Not only the atoms deposition and adatoms diffusion, but also the bonding of adatoms were considered distinguishing with the traditional algorithm. The effects of substrate temperature, laser pulse repetition rate and incident kinetic energy on BaTiO3 thin film growth were investigated at submonolayer regime. The results show that the island density decreases and the bonding ratio increases with the increase of substrate temperature from 700 to 850 K. With the laser pulse repetition rate increasing, the island density decreases while the bonding ratio increases. With the incident kinetic energy increasing, the island density decreases except 6.2 eV<Ek<9.6 eV, and the bonding ratio increases at Ek<9.6 eV. The simulation results were discussed compared with the previous experimental results.
Considering the characteristics of perovskite structure, a kinetic Monte Carlo(KMC) model, in which Born-Mayer- Huggins(BMH) potential was introduced to calculate the interatomic interactions and the bonding ratio was defined to reflect the crystallinity, was developed to simulate the growth of BaTiO3 thin film via pulsed laser deposition(PLD). Not only the atoms deposition and adatoms diffusion, but also the bonding of adatoms were considered distinguishing with the traditional algorithm. The effects of substrate temperature, laser pulse repetition rate and incident kinetic energy on BaTiO3 thin film growth were investigated at submonolayer regime. The results show that the island density decreases and the bonding ratio increases with the increase of substrate temperature from 700 to 850 K. With the laser pulse repetition rate increasing, the island density decreases while the bonding ratio increases. With the incident kinetic energy increasing, the island density decreases except 6.2 eV〈Ek〈9.6 eV, and the bonding ratio increases at Ek〈9.6 eV. The simulation results were discussed compared with the previous experimental results.
出处
《中国有色金属学会会刊:英文版》
EI
CSCD
2007年第6期1441-1446,共6页
Transactions of Nonferrous Metals Society of China
基金
Projects(10472099
10672139) supported by the National Natural Science Foundation of China
Project(207079) supported by the Key Project of Ministry of Education of PRC
Project(05FJ2005) supported by Key Project of Scientific Technological Department of Hunan Province, China
Project(06A072) supported by the Key Project of Education Department of Hunan Province, China
关键词
蒙特卡罗模拟
脉冲激光沉积
BaTiO3薄膜
钙钛矿
kinetic Monte Carlo simulation
pulsed laser deposition
BaTiO3 thin film
perovskite structure