期刊文献+

中国象棋人机对弈的自学习方法研究 被引量:2

Research on Methods of Self-Teaching of Chinese Chess Game
下载PDF
导出
摘要 机器博弈被认为是人工智能领域最具挑战性的研究方向之一。中国象棋计算机博弈的难度绝不亚于国际象棋,但是涉足学者太少,具有自学习能力的就更少了。介绍了中国象棋人机对弈原理,给出了近年来几类典型的评估函数自学习方法及其原理,通过比较得出了最适合中国象棋使用的学习方法。分析了这些方法尚存在的问题,并提出了未来的研究方向。 Computer game is one of the most challenging topics in the field of artificial intelligence. Chinese chess computer game is more complex than chess computer game, and the fewer researchers and the fewest research have the ability of self- teaching in this field. The brief principle of Chinese chess computer game is introduced. The methods of self - teaching of evaluation function in the last few years are presented, as well as get the self- teaching method that fit in with Chinese chess computer game. The general problems with these methods, and promising avenues for future research are discussed.
作者 付强 陈焕文
出处 《计算机技术与发展》 2007年第12期76-79,共4页 Computer Technology and Development
基金 国家自然科学基金(60075019)
关键词 中国象棋 激励学习 神经网络 瞬时差分 博弈 Chinese chess reinforcement learning neural network temporal difference game
  • 相关文献

参考文献12

  • 1徐心和,王骄.中国象棋计算机博弈关键技术分析[J].小型微型计算机系统,2006,27(6):961-969. 被引量:61
  • 2Yen Shi - Jim, Chen Jr - Chang, Yang Tai - Ning, et al. Computer Chinese Chess[J]. ICGA Journal,2004(3) :2 - 6.
  • 3高阳,陈世福,陆鑫.强化学习研究综述[J].自动化学报,2004,30(1):86-100. 被引量:268
  • 4Sutton R S. Learning to predict by the methods of temporal difference[ J ]. Machine Learning, 1988,3:9 - 44.
  • 5Dayan W P. Q- learning[J]. Machine Learning, 1992(3) : 279 - 292.
  • 6Tsitsiklis, Jolm N. Asynchronous stochastic approximation and Q- learning[J ]. Machine Learning, 1994(3) : 185 - 202.
  • 7Tesauro G. TD- gammon,a self- teaching backgammon program, achieves master- level play[J ]. Neural Computation, 1994,6(2) :215 - 219.
  • 8莫建文,林士敏,张顺岚.基于TD强化学习智能博弈程序的设计与实现[J].计算机应用,2004,24(S1):287-288. 被引量:7
  • 9Trinh T B, Bashi A S, Deshpande N. Temporal Difference Learning In Chinese Chess [ EB/OL]. 1998. http://www. yutopian.com/chinesechess.
  • 10Szeto C, McDermott D. Chinese Chess and Temporal Difference Learning [EB/OL]. 1999. http://zoo. cs. yale. edu/ classes/cs490/98 - 99b/szeto. christopher.szeto/report. html.

二级参考文献43

  • 1Angeline J, Pollack B. Competitive environments evolve better solution for complex tasks[A]. Proceedings of the Fifth International Conference on Genetic Algorithms[C]. Urbana-Champaign, 1993.264-270.
  • 2Yen S J, Chen J C, Yang T N. Computer Chinese chess[J]. ICGA Journal, 2004,(3):3-18.
  • 3Marsland T A. Computer chess and search[D]. Edmonton: University of Alberta, 1991.
  • 4Hsu S C, Tsao K M. Design and implementation of an opening game knowledge-base system for computer Chinese chess[R]. Bulletin of the College of Engineering, N T U, 1991,(53):75-86.
  • 5Lorenz D, Markovitch S. Derivative evaluation function learning using genetic operators[A]. Proceedings of the AAAI Fall Symposium on Games: Planing and Learning[C]. New Carolina, 1993.106-114.
  • 6Holland J H. Adaptation in nature and artificial system[M]. Ann Arbor: The University of Michigan Press, 1975.
  • 7米凯利维茨Z.演化程序遗传算法和数据编码的结合[M].北京:科学出版社,2000.20-23.
  • 8Newborn M. Recent progress in computer chess[J]. Advances in Computer, 1978, 18:59-117.
  • 9Don F Beal. A generalised quiescence search algorithm, department if computer science, queen mary college[J]. London University, Artificial Intelligence, 1990,43: 85-98.
  • 10Ed Schroder. How rebel plays chess [EB/OL]. http://membets. home. nl/matador/chess840.htm, 2002.

共引文献361

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部