期刊文献+

放疗靶区呼吸运动对CT模拟定位图像重建的几何体积精度的体模实验研究 被引量:7

Precision Analyzing on Virtual Volume by Using Respiration Motion Phantom
下载PDF
导出
摘要 目的:研究放射治疗病人的不同呼吸运动状态对CT模拟定位扫描的图像重建精度的影响以及对放射治疗计划设计和评估的影响。方法:使用动态体模模拟放疗患者肺部靶区的呼吸运动,测试和计算不同运动周期和幅度下用于治疗计划设计的CT扫描的图像重建几何体积的变化。体模运动单元包含1cm和2cm的两个统一密度的球体和边长3cm的正方体,分别设定在沿CT定位床轴向以±1cm和±2cm的幅度作运动周期为3s,4s,5s,6s和10s的匀速振动。CT扫描条件为螺距1.5,层厚5mm,扫描速度1Slice/s。在CT模拟定位工作站上对扫描的原始数据进行三维图像重建,以自动阈值勾画方式计算模拟靶区体积大小,并与体模的实际几何体积比较确定误差。结果:(1)在体模运动方向有明显的几何体积误差,且可能形成明显的成像间隙。(2)重建的模拟运动靶区体积变化与其物理体积大小和运动状态相关。在选定的CT扫描参数和靶区体积的运动状态下,CT扫描图像重建的体积误差最大达66.7%,在振幅为2cm时相隔2cm的模体图像甚至可能发生部分重迭。(3)靶区图像的几何中心可能发生偏差,从而造成治疗计划设计的射野中心偏差。结论:在呼吸运动幅度和周期分别大于2cm和4s时有必要对定位患者采取呼吸限制方式进行CT模拟定位扫描或根据实际测量结果评估靶区体积误差可能带来的计划误差。 Objective: A QUASAR respiration motion phantom was used to study the aliasing of target volume encountered when acquiring treatment planning CT's of a moving target in lung. Materials and Methods: The unit was programmed for (S/I) displacements of± 1 cm and ± 2 cm respectively, about apoint,with initial phase 0 or 7r with period of 3 s, 4 s, 5 s, 6 s, 10 s. Targets consisted of two spheres of unit density, 1 cm and 2 cm in diameters and a cube,3 cm in side length. Spiral CT scanning was performed on CT scanner (Siemens) on both stationary and dynamic targets. A pitch of 1.5 was used to acquire CT scan slices of thicknesses 5 mm. Scanspeeds of 1 s were investigated, and a consistent image acquisition to motion phase synchronization scheme was used on all scans that involved moving targets. Result: (1) While moving, there are obviously volume aliasing on S/I direction. Geometric miss, which is predominantly observed at the S/I extremes of the moving target image; (2)The size of target and the motion state both effect Volume aliasing. The max difference of volume reach to 66.7%. While amplitude is 2 cm, target volumes between 2 cm will partly overlapped; (3) Geometric centre of the target volume also changed. Conclusion: When speacial setup, we ought to limit the motion of the patient if his organ amplitude reach to 2 cm and his respiratory cycle is above and beyond 4 s.With the real amplitude of the motion state which directly effect the speacial integrity of target volume. Or evaluating the discrepancy of the plan which based on aliasing of target volume with measured result.
出处 《中国医学物理学杂志》 CSCD 2007年第6期391-395,414,共6页 Chinese Journal of Medical Physics
关键词 放射治疗 CT模拟定位 呼吸运动 图像重建 radiotherapy spiral CT respiration motion phantom image reconstruction
  • 相关文献

参考文献14

  • 1Nishidai T,Nagata Y,Takahashi M.et al. CT simulator:Anew 3-D planning and simulating system for radiotherapy. Part 1,Prescription of system[J]. Int J Radial Oncol Biol Phys, 1990,18:499-504.
  • 2Greg Michael, X-ray computed tomography [M]. USA. Physicseducation lop Publishing Ltd. 2001,442-451.
  • 3AAPM. Quality assurance for computed-tomography simu-lators and the computed-tomography-simulation process[R]. USA. AAPM Report TG-No.66. AAPM. 2003,2764-2766.
  • 4G. T. Chen, J. H. Kung, and K. P. Beaudette. Artifacts in computed tomography scanning of moving objects [J]. Geriatr. Nephrol. Urol. 2004,14:19 -26.
  • 5C. H. Mc Collough, M. R. Bruesewitz, T. R. Daly, and F. E. zink. Motionartifacts in subsecond conventional CT and electron-beam CT: Pictorial demonstration of temporal resolution[J]. Radiographics 2000, 20:1675-1681.
  • 6J. M. Balter, R. K. Ten Haken, T. S. Lawrence, K. L. LamL, and J. M. Robertson. Uncertainties in CT-based radiation therapy planning associated with patient breathing[J]. Int. J. Radiat. Oncol., Biol., Phys. 1996,36:167-174.
  • 7祁振宇,黄劭敏,邓小武.放疗计划CT值的校准检测及其影响因素分析[J].癌症,2006,25(1):110-114. 被引量:53
  • 8G. T. Chen, J. H. Kung, and K. P. Beaudette. Artifacts in computed tomography scanning of moving objects [J]. Geriatr. Nephrol. Urol. 2004,14:19-26.
  • 9S Svedam,P J Keall,V R Kini. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal[J]. Phys. Med. Biol. 2003,48:45-62.
  • 10S. Shimizu, H. Shirato, K. Kagei, T. Nishioka, X. Bo, H. Dosaka- Akita, S. Hashimoto, H. Aoyama, K. Tsuchiya, and K. Miyasaka. Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3) radiotherapy [J]. Int. J. Radiat. Oncol., Biol., Phys. 2000,46:1127-1133.

二级参考文献8

  • 1MUTIC S, PALTA J R, BUTKER E K, et al. Quality assurance for computed tomography simulators and the computed tomography simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66 [J]. Med Phys, 2003,30 (10) :2762-2793.
  • 2BENEVENTI S, CHIONNE F,GOBBI G, et al. Quantitative CT tomography for radiotherapy treatment planning: calibration phantom andsources of error [J]. Radiother Oncol, 1995, 37 (supplement): 41.
  • 3LUCA C, ANTONELLA F,FRANCESCA B, et al. Dosimetric impact of computed tomography calibration on a commercial treatment planning system for external radiation therapy [J]. Radiother oncol, 1998,48(3) :335-338.
  • 4METCALFE P. Radiotherapy treatment planning [M]// METCALFE P,KRON T, eds. The physics of radiotherapy X-rays. Oxford : Oxford university press, 2000:293-364.
  • 5MACKIE T R, EL-KHATIB E,BATTISTA J, et al. Lung dose correction for 6 and 15 MV X-rays[J]. Med Phys, 1985,12(3) :327.
  • 6CONSTANTINOU C, HARRINGTON J C, CADIEUX R A, et al. Dosimetry at lung-muscle and lung-bone interfaees using 6 MV and 10 MV X-rays and 12-18 MeV electrons [J].Int J Radiat Oncol Biol Phys, 1993,15(supplement 1 ) : 244.
  • 7CONSTANTINOU C, HARRINGTON J C, DEWERD L A. An electron density phantom for calibrating CT-based planning computers to correct for heterogeneities [J]. Med Phys,1992, 19(2) :325-332.
  • 8VAN DYK J, BARNETT R B,CYGLER J E, et al. Commissioning and quality assurance of treatment planning computers [J]. Int J RadiatOncol Biol Phys, 1993,26(2) :261-273.

共引文献52

同被引文献49

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部