期刊文献+

基于CBR的PACS系统智能辅助诊断模型研究

Intelligent Computer-Aided Diagnosis Modal Research in PACS System Based on CBR
下载PDF
导出
摘要 将数据挖掘技术与PACS系统相结合,对基于CBR(案例推理)的智能辅助诊断模型进行研究,给出模型的构造框架,并对模型功效进行分析和评估。 In this paper, we give our research of integrating data mining techniques and PACS system. Hidden knowledge and useful information can be derived to make decision in CAD. Out modal are proposed and it's effectiveness index formulae will also be given.
出处 《中国医疗器械信息》 2007年第10期35-37,共3页 China Medical Device Information
基金 安徽省高校青年教师科研资助计划项目(2006jql130)
  • 相关文献

参考文献1

二级参考文献13

  • 1Mario Lenz. Case-based Reasoning: From Foundations to Applications [M]. Berlin: Springer, 1998
  • 2Jagielska I, Matthews C, Whitfort T. An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems [J]. Neurocomputing,1999, 24:37~54
  • 3David Leake. Learning to integrate multiple knowledge sources for case-based reasoning [J]. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, Nagoya, Japan, Morgan Kaufmann san Fransisco,1997, 246~251
  • 4Hiroshi Tsukimoto. Extracting rules from neural networks [J]. IEEE Transactions on Neural Networks, 2000,11(2) :377~389
  • 5Mejia-Lavalle M, Rodriguez-Ortiz G. Obtaining expert system rules using data mining tools from a power generation database[J]. Expert systems with applications, 1998, 14:37~42
  • 6Kraslawski A, Pedrycz W, L Nystrom. Fuzzy neural network as instance generator for case-based reasoning system[J]. Neural Computing & Applications, 1999, 8:106~113
  • 7Hanney K, Keane M. Learning adaptation rules from a case base [J]. Ian smith, Boi Faltings eds Proceedings of the Third European Workshop on Case-based Reasoning, Lausanne, New York :Springer, 1996, 178~ 192
  • 8Rudolph Stephan. Knowledge discovery in scientific data [J]. Proceedings of the International Society for Optical Engineering, 2000,250~258
  • 9Skalak D. Prototype and features selection by sampling and random mutation hill-climbing algorithm[J], in Proc.11th Int. Machine Learning Conf, Morgan Koufanann, 1994, 293~301
  • 10Azuaje F. Discovering relevance knowledge in data :a growing cell structure approach [J]. IEEE Transactions on systems, man, and cybernetics, 2000,30(3):

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部