期刊文献+

UKF在永磁直线同步电动机无位置传感器控制中的应用 被引量:5

APPLICATIONS OF UNSCENTED KALMAN FILTER ON POSITION SENSORLESS CONTROL OF PERMANENT MAGNET LINEAR SYNCHEONOUS MOTOR
下载PDF
导出
摘要 Unscented卡尔曼滤波器(UKF)在许多非线性估计问题中是一种估计性能优于扩展卡尔曼滤波器(EKF)的非线性滤波方法。然而在永磁直线同步电动机无位置传感器控制中,UKF是否能提高永磁直线电动机位置与速度的估计性能却尚未见研究。针对永磁直线同步电动机进给系统的特点,建立用于位置与速度估计器的永磁直线同步电动机进给系统模型,提出永磁直线同步电动机无位置传感器控制系统。通过仿真和试验对UKF的估计性能进行评估,并与EKF进行了比较。仿真及试验结果表明,UKF在估计性能与EKF相当,然而UKF的计算量却比EKF大,使得在高速永磁直线同步电动机无位置传感器控制这一特定问题上,EKF比UKF更有效。 For a variety of nonlinear estimation problems, the unscented Kalman filter (UKF) is a superior alternative to the extended Kalman filter (EKF). The effectiveness of UKF for position sensorless control of permanent magnet linear synchronous motor (PMLSM) is investigated. At first, the PMLSM model used in the estimation algorithm is established, then, the position sensorless PMLSM drive system based on UKF is presented. Via simulations and experiments, the effectiveness of UKF for position sensorless control of PMLSM is verified. And, a comparison of estimation performance of UKF and EKF for estimating position and speed is carried out. The simulation and experiment results indicate that UKF performs equivalently with EKF, but the computational time of UKF is more than that of EKF. For estimating position and speed of PMLSM, the EKF is a better choice than UKF .
出处 《机械工程学报》 EI CAS CSCD 北大核心 2007年第11期149-153,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金(50475101)浙江省自然科学基金(Y104193)资助项目。
关键词 UNSCENTED卡尔曼滤波 扩展卡尔曼滤波 永磁直线同步电动机 无位置传感器控制 Unscented Kalman filter Extended Kalman filter Permanent magnet linear synchronous Position sensorless control
  • 相关文献

参考文献6

  • 1BOLOGNANI S,OBOE R,ZIGLIOTTO M.Sensorless full digital PMSM drive with EKF estimation of speed and rotor position[J].IEEE Transactions on Industry Electronics,1999,46(1):1-8.
  • 2CHEN Yuan rui,CHEUNG Norbert C,WU Jie.Sensorless drive of permanent magnet linear motors using modified Kalman filter[C]//IEEE 32nd Power Electronics Specialists Conference,2001,4:741-1747.
  • 3柴霖,袁建平,罗建军,方群,岳晓奎.非线性估计理论的最新进展[J].宇航学报,2005,26(3):380-384. 被引量:35
  • 4JULIER S J,UHLMANN J K.Unscented filtering and nonlinear estimation[C]//IEEE Proc of the Aerospace and Electronic Systems,2004,92(3):401-422.
  • 5WAN E A,VAN DER Merwe R.The unscented Kalman filter for nonlinear estimation[C]//IEEE Proceedings of the Symposium 2000 on Adaptive System for Signal Processing,Communication and Control,Lake Louis,Alberta,Canada,2000:153-158.
  • 6潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230

二级参考文献89

  • 1张红梅,邓正隆,林玉荣.一种基于模型误差预测的UKF方法[J].航空学报,2004,25(6):598-601. 被引量:23
  • 2张友民,戴冠中,张洪才.卡尔曼滤波计算方法研究进展[J].控制理论与应用,1995,12(5):529-538. 被引量:45
  • 3Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 4Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141.
  • 5Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632.
  • 6Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[EB/OL].http://www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip,1997-09-27.
  • 7Julier S J,Uhlmann J K.A consistent,debiased method for converting between polar and Cartesian coordinate systems[A].The Proc of AeroSense:The 11th Int Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:110 -121.
  • 8Julier S J,Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[A].The Proc of AeroSense:11th Int Symposium Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:54-65.
  • 9Julier S J.A skewed approach to filtering[A].The Proc of AeroSense:12th Int Symposium Aerospace/Defense Sensing Simulation Control[C].Orlando,1998:271-282.
  • 10Julier S J.The spherical simplex unscented transformation[A].American Control Conf[C].Denver,2003:2430-2434.

共引文献259

同被引文献57

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部