期刊文献+

最优小波包分解在基于响应信号的结构损伤检测中的应用 被引量:1

APPLICATION OF WAVELET PACKETS OPTIMAL DECOMPOSITION IN RESPONSE SIGNAL BASED DAMAGE DETECTION
下载PDF
导出
摘要 小波包分解方法在基于响应信号的结构损伤检测中被证明对损伤程度高度敏感,得到广泛的应用。在小波包分解中采用的是完全二进制分叉树型分解,而实际上在分解过程中部分子信号仅含有很少的信息量,对其再进一步分解是不必要的。通过引入熵的概念,可以对分解过程中的各层子信号进行选择,仅对含有足够丰富信息的子信号进行更进一步的分解。这样做可以有效减少最终所得子信号数目,在保持灵敏度的同时降低损伤指标的维数,有助于缩减损伤识别中神经网络的规模,对于大型复杂结构的损伤检测工作具有一定的意义。 It has been proved that the wavelet packets analysis (WPA) is sensitive to damage in response signals based damage detection, so WPA is widely used. The complete binary tree is adopted in WPA, but in fact there are some sub-signals which contain only few information and further decomposition of it will be not necessary. Entropy is adopted as the criteria to choose sub-signals with rich information in each level of decomposition. Then the number of finally obtained sub-signals is reduced and the dimension of the damage index is reduced while still keeping its sensitive to damage. It will reduce the size of artificial neural network (ANN) used in damage detectian. For large and complex structure, the reduction of ANN size will make considerable time saving in training the ANN.
出处 《机械强度》 EI CAS CSCD 北大核心 2007年第6期873-876,共4页 Journal of Mechanical Strength
基金 国家863项目基金(2006AA04Z437)~~
关键词 小波包分解 损伤检测 最优分解 Wavelet packet analysis Damage detection Optimal decoinposition
  • 相关文献

参考文献8

  • 1Yah Y J, Cheng L, Wu Z Y, Yam L H. Development in vibration-based structural damage detection technique. Mechanical Systems and Signal Processing, 2007, 21 (5): 2 198 - 2211.
  • 2张伟伟,王志华,马宏伟.基于小波分析的悬臂梁裂纹参数识别方法研究[J].机械强度,2007,29(2):201-205. 被引量:11
  • 3Yan Y J, Yam L H. Online detection of crack damage in composite plates using embedded piezoelectric actuators/sensors and wavelet analysis. Composite Structures, 2002, 58:29 - 38.
  • 4Kudva J N, Munir N, Tang P W. Damage detection in smart structures using neural networks and finite-element analyses. Smart Materials and Structures, 1992, 1:108 - 112.
  • 5余龙,闫云聚,姜节胜,陈换过.遗传算法在结构损伤检测中的应用与改进[J].机械强度,2006,28(2):240-244. 被引量:2
  • 6Yu L, Yam L H, Cheng L, Yan Y J. Application of eigenvalue perturbation theory for detecting small structural damage using dynamic responses. Composite Structures, 2007, 78(3): 402 - 409.
  • 7Coifman P R, Wickerhauser M V. Entropy-based algorithms for best basis selection. IEEE trans, Inform. Theory, 1992, 38:713 - 718.
  • 8Talreja R. Damage mechanics of composite materials. Composite Materials Series 9. Amsterdam: Elsevier, 1994.

二级参考文献16

  • 1杨智春,于哲峰.结构健康监测中的损伤检测技术研究进展[J].力学进展,2004,34(2):215-223. 被引量:63
  • 2Chou Jamshid Ghaboussi.Genetic algorithm in structural damage detection.Computers and Structures,2001,79:1 335~1 353.
  • 3Kaazem Moslem,Ramin Nafaspour.Structural damage detection by genetic algorithms.AIAA Journal,2002,40(7):1 395~1 401.
  • 4Friswell M I,Penny J E T,Garvey S D.A combined genetic eigensensitivity algorithm for the location of damage in structures.Computer and Structures,1998,69:547~556.
  • 5Talreja R.Damage mechanics of composite materials.New York:Elsevier Science B.V,1994.
  • 6TIAN JiaYong,LI Zheng,SU XianYue.Crack detection in beams by wavelet analysis of transient flexural waves.Journal of Sound and Vibration,2003,261:715~727.
  • 7Quek Sertong,Wang Quan,Zhang Liang,Ang Kiankeong.Sensitivity analysis of crack detection in beams by wavelet technique.International Journal of Solids and Structures,2001,43:2 899~2 910.
  • 8Douka E,Loutridis S,Trochidis A.Crack identification in beams using wavelet analysis.Journal of Sound and Vibration,2003,40:3 557~3 569.
  • 9Loutridis S,Douka E,Trochidis A.Crack identification in double-cracked beams using wavelet analysis.International Journal of Solids and Structures,2004,277:1 025~1 039.
  • 10Hajela P,Soerio F J.Recent developments in damage detection based on system identification methods.Structural Optimization,1990,(2):1~10.

共引文献11

同被引文献25

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部