期刊文献+

单程波方程偏移算法的相位问题研究 被引量:4

Study of phases in one way wave equation migration methods.
下载PDF
导出
摘要 利用稳相原理对叠后单程波方程偏移、二维和三维叠前偏移算法中的相位进行了分析和研究,从理论上论证了叠后偏移算法可以保持输入子波的相位特征,而叠前偏移算法会改变输入子波的相位特征,叠前单炮深度偏移结果相位与输入数据子波相位之间相差了一个因子。上述理论通过基本单位脉冲响应和一个水平反射界面模型的数值模拟得到了验证。从而从理论上解决了波动方程偏移与Kirchhoff积分偏移结果相位不一致问题,这对于正确标定反射层的振幅和深度具有实用意义。 Stationary phase rule was used to analyze and study the phases of one way wave equation post-stack migration,2D and 3D pre- stack depth migration algorithms.It theoretically proves that post- stack migration algorithm can preserve the phase characteristic of the input wavelet.However,pre-stack migration algorithm will change phase characteristic of the input wavelet.The result of sin- gle shot pre-stack depth migration has a constant phase difference from that of the input wavelet.The above mentioned theory was demonstrated by using numerical simulations of fundamental unit impulse response and one horizontal reflection boundary model. Therefore,the phase difference between the wave equation migra- tion and the Kirchhoff integral migration were theoretically solved, which is useful for correctly calibrating the amplitude and depth of reflectors.
出处 《石油物探》 EI CSCD 2007年第6期598-603,共6页 Geophysical Prospecting For Petroleum
关键词 单程波方程偏移 相位 稳相原理 数值模拟 one way wave equation migration phase stationary phase rule numerical simulation
  • 相关文献

参考文献15

  • 1Claerbout J F, Doherty S M. Downward continuation of moveout-corrected seismograms [J]. Geophysics, 1972, 37(5),741-768
  • 2Whitmore D. Iterative depth migration by backward time propagation[J]. Expanded Abstracts of 53ra Annual Internat SEG Mtg, 1983,382-385
  • 3Schneider W. Integral formulation for migration in two and three dimensions[J]. Geophysics, 1978, 43 (1), 49-76
  • 4Claerbout J. Imaging the earth's interior[M]. Cambridge, USA: Blackwell Scientific Publication, 1985. 1-412
  • 5Yilmaz O Z. Seismic data processing ,Volume Ⅰ[M]. Tulsa, USA: Society of Exploration Geophysicist, 2001. 1-485
  • 6Zhang Y, Zhang G, Bleistein N. True amplitude wave equation migration arising from true amplitude one-way wave equations[J]. Inverse Problems, 2003(19) : 1 113-1 138
  • 7Waapener C P A. Representation of seismic sources in the one-way wave equation[J]. Geophysics , 1990, 55 (6) : 786-790
  • 8Gazdag J, Sguazzero P. Migration of seismic data by phase shift plus interpolation[J]. Geophysics, 1984, 49(2): 124-131
  • 9Stoffa P L, Fokkema J T, de Luna Freire R M, et al. Split-step fourier migration[J]. Geophysics, 1990,55 (4) :410-421
  • 10Ristow D, Ruhl T. Fourier finite-difference migration [J]. Geophysics, 1994, 59(12):1 882-1 89a

同被引文献38

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部