摘要
The influences of the additive CaF2, different molds, mold pre-heating temperature, electromagnetic stirring, and alloying elements on CuCr have been investigated respectively during the preparation of CuCr alloys by thermit-reduction electromagnetic stirring. The results indicate that the reasonable reactant mass ratio of CuO: Cr2O3:Al is 100:140:160; CaF2 can reduce the solidification point of slags to improve the metal separating efficiency from slags; the crystal particles become thinner because of the high cooling velocity in the metal mold; while casting in the graphite mold, the casting properties of CuCr improve with the increase of pre-heating temperature; the compact alloys are prepared at 500℃; electromagnetic stirring can prevent the growth of dendrite crystal into refine crystal particles, as well as homogenize Cu and Cr to improve the CuCr properties; the optimal stirring time is 7 min; when the alloying elements Ni and Co are added to the reactants, elements Cu and Cr can distribute evenly but the crystal particles become thick.
The influences of the additive CaF2, different molds, mold pre-heating temperature, electromagnetic stirring, and alloying elements on CuCr have been investigated respectively during the preparation of CuCr alloys by thermit-reduction electromagnetic stirring. The results indicate that the reasonable reactant mass ratio of CuO: Cr2O3:Al is 100:140:160; CaF2 can reduce the solidification point of slags to improve the metal separating efficiency from slags; the crystal particles become thinner because of the high cooling velocity in the metal mold; while casting in the graphite mold, the casting properties of CuCr improve with the increase of pre-heating temperature; the compact alloys are prepared at 500℃; electromagnetic stirring can prevent the growth of dendrite crystal into refine crystal particles, as well as homogenize Cu and Cr to improve the CuCr properties; the optimal stirring time is 7 min; when the alloying elements Ni and Co are added to the reactants, elements Cu and Cr can distribute evenly but the crystal particles become thick.
基金
This work was financially supported by the National Natural Science Foundation of China (No.50374026, 50644016)