期刊文献+

基于偏最小二乘与神经网络耦合的储层参数预测 被引量:4

Prediction of the reservoir parameters based on the coupling of neural network model with partial least square method
下载PDF
导出
摘要 将偏最小二乘回归(PLS)与神经网络(NN)耦合,建立了储层参数预报模型。利用偏最小二乘对影响储层参数的诸多因素进行分析,提取对因变量影响强的成分,从而克服了变量间的多重相关性问题,降低了神经网络的输入维数;同时,利用神经网络建模可以较好地解决非线性的储层参数预测问题。计算实例表明,本耦合模型的拟合和预报精度优于独立使用神经网络模型的精度。 This paper proposes a model for predicting the reservoir parameters based on the combination of neural network with the partial least square method. The factors affecting the reservoir parameters are analyzed by means of partial least square method to extract the most important components, so that not only the problem of multi-correlation among variables can be solved but also the amount of input dimensions of the neural network can be reduced. Besides, the application of neural network helps to solve the problem of nonlinearity of the model. The applied example shows that the proposed model has higher precision than those models based on neural network method only.
出处 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期618-620,共3页 Journal of Chengdu University of Technology: Science & Technology Edition
基金 数学地质四川省高校重点实验室资助 国家自然科学基金委员会与中国石油化工股份有限公司联合基金资助项目(40739903)
关键词 偏最小二乘 神经网络 储层参数预测 partial least square method neural network reservoir parameter prediction
  • 相关文献

参考文献2

二级参考文献11

  • 1高惠璇 耿直 等.SAS系统.SAS/ETS软件使用手册[M].北京:中国统计出版社,1998.65.
  • 2Vapnik V N. Statistical Learning Theory [ M ]. New York:Springer-Verlag , 1995.
  • 3Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998,2(2) : 121 - 167.
  • 4Suykens J A K. Nonlinear modelling and support vector machines [A]. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference [ C ]. Piscataway, N J, USA:IEEE, 2001.67 - 71.
  • 5Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [ J ]. Neural Processing Letters, 1999,9 ( 3 ) :293 - 300.
  • 6Mukherjee S, Osuna E,Gimsi F. Nonlinear prediction of chaotic time series using support vector machines [ A]. Proceedings of the 1997 IEEE Signal Processing Society Workshop [ C]. New York, NY,USA:IEEE, 1997. 511 -520.
  • 7Wegelin J A. A Survey of Partial Least Squares (PLS) Methods,with Emphasis on the Two-block Case [ R]. Seattle:Department of Statistics, University of Washington, 2000.
  • 8Haeoskuldsson A. PLS regression methods [ J]. Journal of Chemometrics, 1988,3(2) :211 -228.
  • 9Raeannar S, Lindgren F, Geladi P, et al. A PLS kernel algorithm for data sets with many variables and fewer objects [ J ]. Chemometrics and Intelligent Laboratory Systems, 1994,5 ( 2 ) : 111 -125.
  • 10Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel Hilbert space [ J]. Journal of Machine Learning Research, 2001,2(6) :97 - 123.

共引文献30

同被引文献43

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部