摘要
阐述了多元牛顿变换的Julia集理论,给出了多元牛顿迭代法,推广了Motyka和Reiter的工作,构造并研究了实指数幂多元牛顿变换的Julia集.结果发现:随参数β值增大,实指数幂多元牛顿变换的Julia集有一个突变,表现为吸引域的个数加1;多元牛顿变换Julia集的吸引域的结构取决于初始点的选取;实指数幂多元牛顿变换Julia集的结构,依赖于相角θ主值范围的选取;多元牛顿变换的Julia集具有对称性.
The theory of Julia sets on multivariable Newton transform is introduced, and the multivariable Newton iteration method is given to extend the work of Motyka and Reiter by the construction and analysis of the Julia sets of multivariable Newton transform for real exponent power. The results show that as the value of the parameter β increases, the Julia sets of the multivariable Newton transform have a sudden change caused by the increase of the attraction region. The structure of attraction region of the Julia sets of multivariable Newton transform depends on the selection of the initial value. The structure of the Julia sets of the multivariable Newton transform for real exponent power depends on the selection of the principal value of the phase angle θ. The Julia sets of multivariable Newton transform have a symmetrical character.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2007年第6期897-903,共7页
Journal of Dalian University of Technology
基金
国家自然科学基金资助项目(60573172)
辽宁省教育厅高等学校科学技术研究资助项目(20040081)
关键词
多元牛顿变换
JULIA集
突变
相角
对称性
multivariable Newton transform
Julia sets
sudden change
phase angle
symmetry