期刊文献+

实指数幂多元牛顿变换的Julia集

Julia sets of multivariable Newton transform for real exponent power
下载PDF
导出
摘要 阐述了多元牛顿变换的Julia集理论,给出了多元牛顿迭代法,推广了Motyka和Reiter的工作,构造并研究了实指数幂多元牛顿变换的Julia集.结果发现:随参数β值增大,实指数幂多元牛顿变换的Julia集有一个突变,表现为吸引域的个数加1;多元牛顿变换Julia集的吸引域的结构取决于初始点的选取;实指数幂多元牛顿变换Julia集的结构,依赖于相角θ主值范围的选取;多元牛顿变换的Julia集具有对称性. The theory of Julia sets on multivariable Newton transform is introduced, and the multivariable Newton iteration method is given to extend the work of Motyka and Reiter by the construction and analysis of the Julia sets of multivariable Newton transform for real exponent power. The results show that as the value of the parameter β increases, the Julia sets of the multivariable Newton transform have a sudden change caused by the increase of the attraction region. The structure of attraction region of the Julia sets of multivariable Newton transform depends on the selection of the initial value. The structure of the Julia sets of the multivariable Newton transform for real exponent power depends on the selection of the principal value of the phase angle θ. The Julia sets of multivariable Newton transform have a symmetrical character.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2007年第6期897-903,共7页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(60573172) 辽宁省教育厅高等学校科学技术研究资助项目(20040081)
关键词 多元牛顿变换 JULIA集 突变 相角 对称性 multivariable Newton transform Julia sets sudden change phase angle symmetry
  • 相关文献

参考文献18

  • 1MANDELBROT B B. The Fractal Geometry of Nature [M]. San Francisco: Freeman W H, 1982.
  • 2PEITGEN H O, SAUPE D. The Science of Fractal Images [M]. Berlin: Springer-Verlag, 1988: 137-218.
  • 3PICKOVER C A. Computers, Pattern, Chaos and Beauty [M]. New York: St. Martin's Press, 1990: 43-105.
  • 4张池平 施云惠.计算方法[M].北京:科学出版社,2002..
  • 5KNEISL K. Julia sets for the super-Newton method, Cauchy's method, and Halley's method [J]. Chaos, 2001, 11(2):359-370.
  • 6PEITGEN H O, SAUPE D, HAESELER F V. Cayley's problem and Julia sets [J]. Math Intell, 1984, 6:11-20.
  • 7WEGNER T, PETERSON M. Fractal Creations [M]. Mill Valley: The Waite Group Press, 1991: 168-231.
  • 8WALTER D J. Computer art representing the behavior of the Newton-Raphson method [J]. Comput & Graphics, 1993, 17(4) : 487-488.
  • 9WALTER D J. Systemised serendipity for producing computer art[J]. Comput Graphics,1993, 17(6): 699-700.
  • 10CARTWRIGHT J H E. Newton maps: fractals from Newtonrs method for the circle map [J]. Comput Graphics, 1999, 23(4): 607-612.

二级参考文献22

  • 1Mandelbrot B B. The Fractal Geometry of Nature [M]. San Francisco: Freeman W H, 1982.
  • 2Peitgen H O, Saupe D. The Science of Fractal Images [M].Berlin: Springer-Verlag, 1988.
  • 3Pickover C A. Computers and the Imagination [M]. New York: St. Martin's Press, 1992.
  • 4Pickover C A. Computers, Pattern, Chaos and Beauty [M].New York: St. Martin's Press, 1990.
  • 5Wang Xingyuan, Liu Xiangdong, Zhu Weiyong, et al. Analysis of c-plane fractal images from z←za + c for α< 0 [J].Fractals, 2000, 8(3): 307~314.
  • 6Carlson P W. Pseudo-3-D rendering methods for fractals in the complex plane [J]. Computer & Graphics, 1996, 20(5): 751~758.
  • 7Carlson P W. Two artistic orbit trap rendering methods for Newton M-set fractals [J]. Computer & Graphics, 1999, 23(6): 925~931.
  • 8Blancharel P. Complex analytic dynamics on the Riemann sphere [J]. Bulletin of the American Mathematical Society, 1984, 11:88 ~ 144.
  • 9Mandelbrot B B, The fractal geometry of nature[M].Son Fransisco: Freeman W H, 1982. 5-47.
  • 10Peitgen H O, Saupe D. The science of fractal images[M]. Berlin: Springer-Verlag, 1988. 137-218.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部