期刊文献+

遥感影像居民地目标Bayesian网络识别算法研究 被引量:5

Residential Areas Detection on Panchromatic Remote Sensing Images Based on Nave Bayesian Networks
下载PDF
导出
摘要 利用Nave Bayesian网络的学习和推理机制,提出一种在遥感影像上提取居民地目标的方法。该方法通过对所选取的正负样本进行学习,获取Bayesian网络的重要参数,即条件概率和概率分布密度。在此基础上,根据正负样本所构建的条件概率网,对未知类别信息的影像进行分类,从而获取居民地目标的信息。通过对实际全色SPOT5影像中居民地目标的提取,表明该方法具有较高的识别率。 The method is proposed to extract the images based on Naive Bayesian network. In this residential areas on panchromatic remote sensing procedure, the conditional probabilities and prior probabilities are obtained from learning the positive and negative samples. On the basic, unknown regions that have not the category information will be classified into residential areas and non-resi- dential areas by learning probability network. Experimental results of extracted residential areas on the images of SPOT5 are presented to illustrate the merit and feasibility.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2007年第12期1103-1106,共4页 Geomatics and Information Science of Wuhan University
基金 国家科技支撑计划重点资助项目(2006BAB10B01)
关键词 Naive贝叶斯网络 居民地 遥感影像 Naive Bayesian network residential area remote sensing image
  • 相关文献

参考文献8

  • 1Lorette A, Descombes X, Zerubia J. Texture Analysis Through a Markovian Modeling and Fuzzy Classification: Application to Urban Area Extraction from Satellite Images[J]. International Journal of Computer Vision, 2000,36(3) : 221-236
  • 2潘励,张志华,张剑清.融合区域分割和边缘信息的居民地提取方法[J].武汉大学学报(信息科学版),2006,31(8):671-674. 被引量:14
  • 3Baesens B,Verstraeten G. Bayesian Network Classifiers for Identifying the Slope of the Customer Lifecycle of Long-Life Customers[J].Pattern Recognition Letters, 2004,156 : 508-523
  • 4戴芹,马建文,欧阳赟,哈斯巴干.利用贝叶斯网络进行遥感变化检测[J].中国图象图形学报,2005,10(6):705-709. 被引量:12
  • 5Aksoy S, Marchisio G, Tilton J C. Learning Bayesian Classifier for Scene Classification with a Visuual Grammar[J]. IEEE Trans on Geoscience and Remote Sensing,2005,43(3) : 581-589
  • 6虞欣,郑肇葆,汤凌,叶志伟.基于Naive Bayes Classifiers的航空影像纹理分类[J].武汉大学学报(信息科学版),2006,31(2):108-111. 被引量:6
  • 7Pan Li, Zheng Hong. Bayesian Image Segmentation and the Data Preprocessing Method Using Fuzzy C-mean Clustering [C]. International Multi-symposiums on Computer & Computational Sciences, Hangzhou,2006
  • 8Zheng Hong, Zhang Jingxin, Nahavandi S. Learning Detect to Texture Objects by Artificial Immune Approaches[J].Future Generation Computer System, 2004,20:1 197-1 208

二级参考文献15

  • 1Huang Yong,Chen Kapluck,Zhang Zhihua.Texture Classification by Multi-model Feature Integration Using Bayesian Networks[J].Pattern Recognition Letters,2003(24):393-401
  • 2Friedman N,Geiger D,Goldszmidt M.Bayesian Network Classifiers[J].Mach.Learn.,1997(29):131-163
  • 3Bart B,Geert V.Bayesian Network Classifiers for Identifying the Slope of the Customer Lifecycle of Long-life Customers[J].European Journal of Operational Research,2004(156):508-523
  • 4Friedman D, Geiger N, Goldszmidt M. Bayesian network classifiers [J]. Machine Learning, 1997,29(2) :131 ~ 161.
  • 5Friedman N, Elidan G. Learning the dimensionality of hidden variables [A]. In: Proceedings of Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI ) [C] , Seattle,Washington, USA, 2001:144~151.
  • 6HASI Bagan, MA Jian-wen. The Self-Organizing Feature Map Neural Networks Classification of the ASTER Data Based on Wavelet Fusion [J]. China Science[D], 2003, 33 (9): 896~902.
  • 7Cheng J, Bell DA, Liu W. An algorithm for Bayesian belief network construction from data[A]. In: Proceedings of Artificial Intelligence & Statistics[C] , Ft. Lauderdale, Florida, USA, 1997:83~90.
  • 8Heo JOON, Ftzhugh Thomas W. A standardized radiometric normalization method for change detection using remotely sensed imagery[J]. Photogrammetric Engineering & Remote Sensing, 2000,66(2) :173~181.
  • 9Cheng J, Greiner R, Kelly J, et al. Learning Bayesian networks from data: an information-theory based approach [J]. The Artificial Intelligence Journal, 2002, 137 ( 1 ) :43~90.
  • 10Fayyad U M, Irani K B. Multi-interval discretization of continuousvalued attributes for classification learning [ A ]. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence[C] ,San Mateo, CA, 1993:1022 ~ 1027.

共引文献29

同被引文献35

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部