期刊文献+

AlSi7MgBe合金半固态挤压成形件热处理工艺的优化 被引量:1

Optimization of Heat Treating Process for Semi Solid Extruded Parts of AlSi7MgBe Alloy
下载PDF
导出
摘要 采用人工神经网络的方法,研究了固溶时效工艺参数对AlSi7MgBe合金半固态挤压成形件热处理性能的影响,建立了AlSi7MgBe合金半固态挤压成形件热处理工艺制度的人工神经网络模型,并对热处理工艺进行了优化,结果表明,当545℃固溶4h,178℃时效10h,成形件具有最优力学性能Rm=325MPa,A5=14.6%。 The effects of solid solution and ageing process parameters on the properties of semi-solid extruded parts of AlSi7MgBe alloy were studied with the artificial neural network. An artificial neural network model for the heat treatment process of semi-solid extruded parts of AlSi7MgBe alloy was constructed and the process parameters of heat treatment were optimized. The result showed that properties of the part will be the best with the solid solution temperature at 545 ℃ in 4 hours and ageing at 178 ℃ in 10 hours. The tensile strength is 325 MPa, and elongation rate is 14.6%.
出处 《铸造》 EI CAS CSCD 北大核心 2007年第11期1160-1163,共4页 Foundry
基金 教育部科学技术研究重点项目(106058) 教育部博士点基金资助项目(20050145007) 国家教育部新世纪优秀人才支持计划资助(NCET-04-0279)
关键词 AlSi7MgBe合金 半固态 固溶时效 人工神经网络 AlSi7MgBe alloy semi-solid solid solution and aging artificial neural network
  • 相关文献

参考文献12

  • 1LUG M, CUI J, DONG J, et al. Continuous casting of Al alloy 7075 for semi-solid forming [C]. Proceedings of the 6th International conference on Semi-solid of alloys and Composites. Turin, Italy, Sept. 2000: 373-377.
  • 2刘丹,崔建忠.无搅拌制浆新技术——液相线铸造[J].铸造技术,1998(6):44-46. 被引量:30
  • 3崔建忠,路贵民,刘丹,董杰.半固态浆制备技术的新进展[J].哈尔滨工业大学学报,2000,32(4):110-113. 被引量:68
  • 4张际先 宓霞.神经网络及其在工程中的应用[M].北京:机械工业出版社,1998,5.44.
  • 5HECHT-NIELSEN R. Theory of the back propagation neural network [C]. Proceedings of the International Joint Conference on Neural Network, Washington: IEEE, 1989: 593-605.
  • 6SONG RG, HANG Q. Heat treatment optimization for 7175 aluminum alloy by an artificial neural network and a genetic algorithm [J]. Journal of Materials Processing Technology, 2001, 117: 84-88.
  • 7MALINOV S, SHA W, MCKEOWN J J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network [J]. Computational Materials Science, 2001, 21 (3): 375-394.
  • 8LI H J, QI L H, HAN H M, et al. Neural network modeling and optimization of semi-solid extrusion for aluminum matrix comnocitec [J]. Journal of Materials Processing Technology, 2004, 151 : 126- 132.
  • 9宋仁国,张奇志,曾梅光,张宝金.人工神经网络在7175高强铝合金时效动力学研究中的应用[J].东北大学学报(自然科学版),1995,16(2):219-222. 被引量:9
  • 10曾渝,朱远志,尹志民.超高强Al-Zn-Mg-Cu-Zr-Ag合金时效性能预测的人工神经网络模型[J].稀有金属材料与工程,2005,34(5):726-730. 被引量:4

二级参考文献24

  • 1严六明,钦佩,李重河,张未名,陈念贻.人工神经网络法研究填隙AuCu_3相组成规律[J].科学通报,1994,39(1):94-95. 被引量:11
  • 2朱鸣芳,苏华钦.半固态等温处理制备粒状组织ZA12合金的研究[J].铸造,1996,45(4):1-5. 被引量:47
  • 3许珞萍.简明铝合金手册[M].上海:上海科技文献出版社,2001,2..
  • 4唐波,金属学报,1994年,30卷,1期,B23页
  • 5王殿辉,有色金属,1994年,46卷,1期,29页
  • 6张立明.人工神经网络及应用 [M].Shanghai:Press of Fudan University,1993..
  • 7Issam S Jalham. Modeling Capability of the Artificial Neural Network (ANN) to Predict the Effect of the Hot Deformation Parameters on the Strength ofAl-Base Metal Matrix Composites[J]. Composites Science and Technology, 2003, 63:63-67
  • 8Hecht-Nielsen R. Theory of the Backpropagation Neural Network. Proceedings of the International Joint Conference on Neural Network[C]. Wangshington: IEEE, 1989:593-605
  • 9Rumelhart D E. Parallel Distributed Processing: Exploration in the Microstructure of Cognition, Foundations, Vol. I[M].Canbridge, Massachusetts: MIT Press, 1986
  • 10Desanctis M. Structure and Properties of Rapidly Solidified Ultrahigh Strength Al-Zn-Mg-Cu Alloys Produced by Spray Deposition[J]. Materials Science & Engineering A, 1991,141(1): 103-121

共引文献130

同被引文献16

  • 1王平,康皓,路贵民,崔建忠.ZL201合金液相线铸造组织与成形性能[J].材料科学与工程学报,2006,24(2):183-186. 被引量:12
  • 2Kirkwood D H, Kapranos P. Senti - solid processing of alloy [J]. Metal and Materials, 1988, 11(2) :16 -20.
  • 3Flemings M C, Piek R G, Youny K P. The theology of a partially solid alloy [ J ]. Metallurgical Transactions, 1972, 17 (3) :1925 -1932.
  • 4Flemings M C. Behavior of metal alloys in the semi -solid state [J]. Metallurgical Transactions, 1991 , 22B (6) :269 -291.
  • 5Ji S, Fan Z. Solidification behavior of Sn -15 Wt Pct Pb alloy under a high shear rate and high intensity of turbulence during semisolid processing [ J ]. Metall Trans A, 2002, 33A: 3511 -3520.
  • 6Vives C. Elaboration of semisolid alloys by means of new electromagnetic rheocasting processes [ J ]. Metall Trans B, 1992, 23B : 189 -206.
  • 7Chen T J, Hao Y, Sun J. Microstructural evolution of previously deformed ZA27 alloy during partial remelting [J]. Mater Sci Eng A, 2002, 37:73 -81.
  • 8Liu C, Pan Y, Aoyama S. Microstructural evolution of semi - solid Al -7 Si -0.4Mg alloy by short time supersonic vibrations [C]// Proceedings of the 5th international conference on semi- solid processing of alloys and composites. Colorado: Colorado School of Mines, 1998:439 -447.
  • 9Lu G M, Cui J Z, Dung J, et al. Continuous casting of Al alloy 7075 for semi- solid forming [ C ]//In: Chiarmaetta G L, Rosso Meds. Proceedings of the 6th international conference on semi - solid of alloys and composites. Turin: Edimet Spa -Via Corfu 102, 2000:373.
  • 10Flemings M C, Yurko J A, Martinez R A, Solidification processes and microstructures[ C]//A Symposium in Honor of wilfried Kurz as held at the 2004 TMS Annual Meeting; Charlotte, NC; USA; 14 - 18 Mar. 2004. TMS, Warrendale, PA, pp. 3-14. 2004.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部