期刊文献+

电力系统非线性模式分析方法的比较 被引量:20

Comparison Between Methods for Power System Nonlinear Modal Analysis
下载PDF
导出
摘要 该文对2种电力系统非线性模式分析方法——模态级数法和正规形法进行比较。定性比较模态级数法和正规形法的2阶参与因子。在正规形法原有指标的基础上定义一个非线性指标,并以4机2区系统的算例验证该非线性指标的有效性。为比较模态级数法、正规形法和线性模式分析法所得解对时域仿真解的逼近程度,定义一误差指标,并在4机2区系统中做相关分析。发现模态级数法和线性模式分析法的有效性均不受系统共振的影响,而正规形法的有效性受系统共振情况的影响较大,在系统的2阶共振点附近,其有效域面积较小。通过延长故障的持续时间来改变系统的非线性程度,发现随着系统非线性的增强,模态级数法的误差及其增加速度都是最小的,正规形法次之。 Two methods for power system nonlinear modal analysis, i.e., modal series method and normal form method, are compared. Two types of second-order participation factors of modal series method are proposed and qualitatively compared with that of normal form method. A nonlinearity index for normal form method is defined based on the original index, and its validity is verified by the case studies in two-area four-generator power system. To evaluate the precision of solutions obtained by modal series method, normal form method and linear modal method, an error index describing the approximation to the nonlinear simulation is defined and then applied to the same system. It is found that the validity of modal series method and linear modal method is not influenced by the second-order resonance condition, which has a great influence on normal form method. When the operating condition is near the second-order resonance condition, the valid area of normal form method is quite small. The degree of system stress can be increased by changing the fault duration. It is found that as the system stress increases, the error index and its growing speed of modal series method are the smallest, and that of normal form method take second place.
出处 《中国电机工程学报》 EI CSCD 北大核心 2007年第34期19-25,共7页 Proceedings of the CSEE
基金 国家自然科学基金项目(50595411)~~
关键词 电力系统 非线性模式分析 模态级数法 正规形方法 线性模式分析法 参与因子 power system nonlinear modal analysis modal series method normal form method linear modal method participation factor
  • 相关文献

参考文献22

  • 1Vittal V, Bhatia N, Fouad A A. Analysis of the inter-area mode phenomena in power systems following large disturbances[J]. IEEE Trans. on Power Systems, 1991,6(4): 1515-1521.
  • 2Sanchez-Gasca J J, Vittal V, Gibbard M J,et al. Inclusion of higher order terms for small-signal (modal) analysis: committee report-task force on assessing the need to include higher order terms for small-signal (modal) analysis[J]. IEEE Trans. on Power Systems, 2005, 20(4):1886-1904.
  • 3Dobson I, Barocio E. Scaling of normal form analysis coefficients under coordinate change[J].IEEE Trans. on Power Systems, 2004,19(3): 1438-1444.
  • 4Arroyo J, Barocio E. Quantifying nonlinearity in power system using normal form theory and higher-order statistics[C]. Power Engineering Society General Meeting, San Francisco, California, USA,2005.
  • 5Thapar J, Vittal V, Kliemann W, et al. Application of the normal form of vector fields to predict interarea separation in power systems [J]. IEEETrans. on Power Systems, 1997,12(2): 844-850.
  • 6Chih-Ming L, Vittal V, Kliemann W,et al. Investigation of modal interaction and its effects on control performance in stressed power systems using normal forms of vector fields[J]. IEEE Trans. on Power Systems, 1996,11(2):781-787.
  • 7Jang G,Vittal V, Kliemann W. Effect of nonlinear modal interaction on control performance: Using normal forms technique in control design, Part 1:General theory and procedure[J]. IEEE Trans on Power Systems, 1998,13(2): 401-407.
  • 8Jang G, Vittal V, Kliemann W. Effect of nonlinear modal interaction on control performance: Using normal forms technique in control design, Part 2:Case studies[J]. IEEE Trans. on Power Systems, 1998,13(2): 408-413.
  • 9Zou Z Y, Jiang Q Y, Cao Y J, et al. Application of the normal forms to analyze the interactions among the multi-control channels of UPFC[J]. Electric Power and Energy Systems, 2005,27(8): 584-593.
  • 10Liu S, Messina A R, Vittal V. Assessing placement of controllers and nonlinear behavior using normal form analysis[J]. IEEE Trans. on Power Systems, 2005, 20(3):1486-1495.

二级参考文献63

  • 1何大愚.一年以后对美加“8.14”大停电事故的反思[J].电网技术,2004,28(21):1-5. 被引量:181
  • 2邓集祥,赵丽丽.励磁调节器对模态非线性相关作用的影响[J].电网技术,2005,29(1):69-74. 被引量:9
  • 3曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象[J].电网技术,2005,29(15):1-5. 被引量:111
  • 4Chiang H D,XL Theme:Advances in Electric Power Energy Conversion Systems Dynamics Control,1991年,43卷,3期,275页
  • 5Chiang H D,IEEE Trans AC,1988年,33卷,1期,14页
  • 6Chiang H D,IEEE Trans onCS,1987年,34卷,2期,160页
  • 7Chih Minglin,IEEE Trans Power Systems,1996年,11卷,2期,781页
  • 8Arrowsmith D K, Place C M. An introduction to dynamic systems[M].Cambridge University Press, Cambridge,1990.
  • 9Kahn P B, Zarmi Y. Nonlinear dynamics: Exploration through normal forms[C]. John Wiley&Sons.Inc.,1998.
  • 10Lin Chin Ming, Vittal V, Kliemann W H et al. Investigation of modal interaction and its effects on control performance in stressed power systems using normal forms of vector fields, in IEEE PES Summer Meeting[C]. 95 SM522-3, PWRS July 1995.

共引文献72

同被引文献342

引证文献20

二级引证文献216

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部