期刊文献+

水解酸化/AAO工艺的同步脱氮除磷及污泥减量研究 被引量:31

Hydrolysis Acidification/AAO Process for Simultaneous Nitrogen and Phosphorus Removal and Excess Activated Sludge Reduction
下载PDF
导出
摘要 针对传统活性污泥法脱氮除磷效率低、污泥产量高的缺点,提出了水解酸化/缺氧-厌氧-好氧(HAAO)污水、污泥一体化处理工艺,研究了该工艺去除COD、氮、磷和污泥减量的效果及其主要影响因素。试验结果表明,在进水COD为286-425mg/L、NH4^+ -N为36-58mg/L、PO4^3- -P为4-12mg/L、总水力停留时间为11.5h及无外加碳源和碱度的条件下,系统对COD、NH4^+ -N、TN、PO4^3- -P的去除率分别可达95%、98%、84%、87%。好氧段的DO浓度、固体停留时间(SRT)和剩余污泥回流比对系统的运行效果有重要影响。将污水和剩余污泥同时进行水解酸化,既可有效地改善污水的可生化性,提高系统对碳源的利用效率,又可实现污泥的减量化,试验条件下系统的污泥减量率达56.5%。 Aimed at the disadvantages of low nitrogen and phosphorus removal efficiency and high sludge production in conventional activated sludge processes, the integrated treatment process ol wastewater and excess sludge by hydrolysis acidification/anoxic -anaerobic -aerobic (AAO) process was put forward. The efficiencies of COD, nitrogen and phosphorus removal and sludge reduction by this process and the main influencing factors were investigated. The results show that when the influent COD, NH4^+ - N and PO4^3- - P are 286 to 425 mg/L, 36 to 58 mg/L and 4 to 12 mg/L, as well as the hydraulic retention time is 11.5 h and no external carbon source or alkalinity is added, the removal rates of COD, NH4^+ - N, TN and PO4^3- - P are 95% , 98% , 84% and 87% respectively. The DO concentration, SRT in aerobic stage and reflux ratio of excess sludge significantly affect the operation results. The simultane- ous hydrolysis of wastewater and excess activated sludge can improve the biodegradability of raw wastewater, the utilization rate of carbon source, and reduction of excess activated sludge. The reduction rate reaches 56.5% in the experiment.
出处 《中国给水排水》 CAS CSCD 北大核心 2007年第23期1-5,共5页 China Water & Wastewater
基金 北京市属市管高等学校人才强教"创新团队"项目(05005013200504) 高等学校博士学科点专项科研基金资助项目(200600050002) 北京市自然科学基金资助项目(8042004)
关键词 脱氮 除磷 污泥减量 水解酸化 AAO工艺 nitrogen removal phosphorus removal reduction of excess activated sludge hydrolysis acidification anoxic/anaerobic/aerobic process
  • 相关文献

参考文献9

  • 1王宝贞.水污染控制工程[M].北京:高等教育出版社,1994.36-37.
  • 2Van Loosdrecht M C M,Henze M.Maintenance,endogenous respiration,lysis,decay and predation[J].Water Sci Technol,1999,39(1):107-117.
  • 3Mayhew M,Stephenson T.Low biomass yield activated sludge:a review[J].Environ Technol,1997,18(9):883-892.
  • 4Low E U,Chase H A,Milner M G,et al.Uncoupling of metabolism to reduce biomass production in the activated sludge process[J].Water Res,2000,34(12):3204-3212.
  • 5Hailer A,Mason C A,Hamer G.Death and lysis during aerobic thermophilic sludge treatment:characterization of recalcitrant products[J].Water Res,1994,28(4):863-869.
  • 6Chen G H,Saby S,Djafer M,et al.New approaches to minimize excess sludgg in activated sludge systems[J].Water Sci Technol,2001,44(10):203-208.
  • 7Kamiya T,Hirotsuji J.New combined system of biological process and intermittent ozonation for advanced wastewater treatment[J].Water Sci Technol,1998,38(8-9):145-153.
  • 8Saby S,Djafer M,Chen G H.Feasibility of using a chlorination step to reduce excess sludge in activated sludge process[J].Water Res,2002,36(3):656-666.
  • 9Ghyoot W,Verstraete W.Reduced sludge production in a two-stage membrane-assisted bioreactor[J].Water Res,1999,34(1):205-215.

共引文献14

同被引文献273

引证文献31

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部