期刊文献+

Bellman最优原理在复杂加权网络中的应用研究 被引量:1

The Application of Bellman Optimum Principle to Complex Weighted Networks
原文传递
导出
摘要 针对现有算法及软件计算复杂加权网络介数的局限性,应用Bellman最优原理于复杂加权网络介数计算中,并针对复杂网络动态演化,节点众多,重点,节点间无边连接等特点作了相应修改.依算法实例计算出了复杂加权网络的最短路径长、最短路径和介数,最后经验证算法具有较快的运行速度和较准确的结果. Regarding of the limitations of computing complex weighted networks by existing algorithm and softwares, Bellman optimum principle was applied in it in this paper. Some extending was done to the original algorithm on the basis of such differeces between complex networks and small networks as dynamic evolving,numerous nodes, coincided nodes, no edges between nodes. In the end, through a real example the shortest route, its length and betweenness were worked out according to the algorithm. Moreover, the results showed a high accuracy and quicker operating speed.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第23期60-65,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(70361002) 南昌工程学院青年基金科技项目(2006KJ031)
关键词 复杂网络 权重 最短路径 介数 complex networks weight shortest route betweenness
  • 相关文献

参考文献10

  • 1Newman M E J. The structure and function of complex networks[J]. SIAM Review,2003,45(2):167-256.
  • 2Albert R, Barabasi A L, Jeong H. Mean-field theory for scale-free random networks[J]. Physics A,1999,272: 173-187 ,cond-mat/9907068.
  • 3潘灶烽,汪小帆.一种可大范围调节聚类系数的加权无标度网络模型[J].物理学报,2006,55(8):4058-4064. 被引量:36
  • 4Almaas E, Kulkarni R V, Stroud D. Charaterizing the structure of small-world networks[J]. Phys Rev Lett, 2002,88(9).
  • 5Reka Albert, Albert-Laszlo Barabasi. Statistial mechanics of complex networks[J]. Review of Modern Physlea, 2002,74(1):47-97.
  • 6Duncan J Watts著,陈禹等译.有序与无序之间的网络动力学[M].北京:中国人民大学出版社,2006.2-3.
  • 7李杰,刘思峰,任盈盈,贾迎宾,商红岩.Kth最短路径的Bellman改进算法[J].数学的实践与认识,2006,36(1):215-219. 被引量:4
  • 8Andersson H. Epidemic models and social networks[J]. Math Scientist, 1999,24: 128-147.
  • 9Bilke S, Peterson C. Topological properties of citation and metabolic networks[J]. Phys Rev E, 2001,64:036106.
  • 10Caldarelli G, Pastor-Satorras R, Vespignani A. Cycles structure and local ordering in complex networks[J]. Preprint cond-mat, 2002,0212026.

二级参考文献23

共引文献39

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部