期刊文献+

一种对IMM真实误差协方差的估计方法

Approach to Estimate True Error Covariance of IMM
下载PDF
导出
摘要 交互式多模型IMM被认为是对混合系统估计的一种性价比最好的算法之一。由于真实模式序列未知,由IMM得到的误差协方差矩阵通常与真实值不相等。在假设条件下,分析了一种新的对真实误差协方差的估计方法,并且通过Monte-Carlo仿真用真实误差协方差矩阵的平均值来评估IMM的性能。 Interacting multiple model method IMM has been shown to be one of the most cost-effective algorithms for the estimation of hybrid system. The true mode sequence was not known, so the error covariance matrices which were calculated via IMM were not accurate. The effectiveness of a new approach to estimate the true error covariance was investigated under some assumptions, and the mean of true error covariance was utilized to estimate the performance of lMM via Monte-Carlo simulations.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第23期5597-5600,共4页 Journal of System Simulation
关键词 混合系统 交互式多模型 卡尔曼滤波器 真实误差协方差 hybrid system IMM kalman filter true error covariance
  • 相关文献

参考文献9

  • 1D MagilL Optimal adaptive estimation of sampled stochastic processes [J]. IEEE trans on Automatic Control (S0018-9286), 1965, 10(4): 434-439.
  • 2H A P Blom, Y Bar-Shalom. The interacting multiple model algorithm for systems with Markovian switching coefficients [J]. IEEE trans on Automatic Control (S0018-9286), 1988,33(8): 780-783.
  • 3X R Li, V P Jilkov. Survey of Maneuvering Target Tracking. Part V: Multiple-Model Methods [J].IEEE trans on Aerospace and Electronic Systems (S0018-9251),2005, 43(4): 1255-1321.
  • 4X R Li, Y Bar-Shalom. Performance Prediction of the Interacting Multiple Model Algorithm [J]. IEEE trans on Aerospace and Electronic Systems (S0018-9251), 1993,39(3): 775-771.
  • 5田宏伟,敬忠良,胡士强,李建勋.基于小波变换的双站纯角度机动目标融合跟踪[J].系统仿真学报,2005,17(2):300-303. 被引量:5
  • 6贾宇岗,梁彦,潘泉,张洪才,戴冠中.交互式多模型算法过渡过程的仿真分析[J].系统仿真学报,2002,14(1):16-18. 被引量:13
  • 7X R Li. Measures of performance for evaluation of estimators and filters [C]// Proceedings of SPIE conference on Signal and Data Processing of Small Targets, San Diego, CA, USA: The International Society for Optical Engineering, 2001 July-August: 510-527.
  • 8X R Li. A Survey of maneuvering target tracking. Part I Dynamic models [J]. IEEE trans on Aerospace and Electronic Systems (S0018-9251),2003,39(4):1333-1364.
  • 9T Kirubarajan, Y Bar-Shalom. Kalman Filter Versus IMM Estimator: When Do We Need the Latter? [J]. IEEE trans on Aerospace and electronic systems (S0018-9251), 2003, 39(4): 1452-1457.

二级参考文献16

  • 1GuoSheng Yang, LiHua Dou, Jie Chen, ChaoZhen Hou. Synergy Decision in The Multi-Target Tracking Based on IRST and Intermittent- Working Radar [J]. Information Fusion, 2001, 2: 243-250.
  • 2Francois Dufour, Michel Mariton, Matra. Tracking a 3D Maneuvering Target With Passive Sensors [J]. IEEE Trans on Aerospace and Electronic Systems, 1991, 27(4): 725-739.
  • 3Alfonso Farina. Target Ttacking with Bearings-Only Measurements [J]. Signal Processing, 1999, 78: 61-78.
  • 4Hong L. Multiresolutional Distributed Filtering [J]. IEEE Trans on Automatic Control, 1994, 39(4): 853-856.
  • 5Hong L. Multiresolutional Multiple-Model Target Tracking [J]. IEEE Trans on Aerospace and Electronic Systems, 1994, 30(2): 518-524.
  • 6Hong L. Multirate Interacting Multiple Model Filtering for Target Tracking Using Multirate Models [J]. IEEE Trans On Automatic Control, 1999, 44(7): 1326-1340.
  • 7Hong L, Cui N Z. An Interacting Multipattern Probabilistic Data Association (IMP-PDA) Algorithm for Target Tracking [J]. IEEE Trans On Automatic Control, 2001, 46(8): 1223-1236.
  • 8Hong L, Cui N Z, Cong S, wicher D. An Interacting Multipattern Data Association (IMPDA) Tracking Algorithm [J]. Signal Processing, 1998, 71: 55-77.
  • 9崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995..
  • 10Li X R. Hybrid Estimation Techniques [A]. Control and Dynamic Systems [C]. vol 76, 1996. 1-76.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部