期刊文献+

面向FCM聚类阈值分割的聚类有效性判别函数 被引量:1

Cluster validity function used for FCM segmentation
下载PDF
导出
摘要 为了得到FCM聚类多阈值分割中最佳聚类个数,针对Bezdek熵在数字图像数据聚类有效性判别中的不足,提出一种改进的聚类有效性判别函数.新函数通过在Bezdek划分熵中增加补偿项来突出最佳聚类时的函数值,提高有效性判别的正确性.试验结果表明,基于改进初始隶属度矩阵生成方法的FCM算法,计算迭代次数为传统FCM方法的55%,计算用时减少了约45%,而且由改进聚类有效性判别函数得到的最佳聚类数目和试验图像相符,效果明显优于Bezdek熵方法,由最佳聚类数得到的分割图像能够体现目标绝大多数信息,证明了本算法的有效性和正确性. In order to calculate out the optimal class number of FCM cluster algorithm,an improved cluster validity function was proposed at the basis of Bezdek partition entropy.A compatriotic term was added to Bezdek partition entropy for the purpose of making minimum function value stood out and bettering the correctness of calculating result.Experiments was performed and the results shown that the number of iteration based on the new initial partition matrix creating method was decreased about 55% and the searching time was reduced by 45% compared with traditional method,the results also shown that the optimal class number obtained from our function was agree with tested image and was much better than results obtained from Bezdek algorithm,the experiments also told that the segmentation image with optimal class number embodied most of object information of initial image.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2007年第5期23-27,共5页 Journal of Anhui University(Natural Science Edition)
关键词 聚类有效性 FCM 最佳聚类数 阈值分割 隶属度矩阵 cluster validity FCM optimal class number threshold segmentation partition matrix
  • 相关文献

参考文献7

  • 1Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York:Plenum,1981.
  • 2Yamany S M,Farag A A,Hsu S.A fuzzy hyperspectral classifier for automatic target recognition(ATR)systems[J].Pattern Recognit.Lett.,1999,20(1):1431-1438.
  • 3Szil gyi L,Beny Z,Szilgy S M,et al.MR brain image segmentation using an enhanced fuzzy c-means algorithm.Proceedings of the 25th Annual International Conference of the IEEE EMBS[C].Cancun,Mexico September,2003(17-21):724-726.
  • 4Hathaway R J,Bezdek J C.Generalized fuzzy c-means clustering strategies using L norm distance[J].IEEE Trans.Fuzzy Syst.,2000(8):576-572.
  • 5范九伦,吴成茂,丁夷.基于样本最大分类信息的聚类有效性函数[J].模糊系统与数学,2001,15(3):68-73. 被引量:13
  • 6诸克军,苏顺华,黎金玲.模糊C-均值中的最优聚类与最佳聚类数[J].系统工程理论与实践,2005,25(3):52-61. 被引量:69
  • 7孙才志,王敬东,潘俊.模糊聚类分析最佳聚类数的确定方法研究[J].模糊系统与数学,2001,15(1):89-92. 被引量:85

二级参考文献21

  • 1张伟.Fuzzy聚类算法中的一个新算法--Fuzzy PFS聚类法[J].模糊数学,1987,3(4):51-56.
  • 2张伟,模糊数学,1987年,3卷,4期,51页
  • 3Linkens D A,Fuzzy Sets and Systems,1999年,107卷,3期,299页
  • 4Bezdek J. Pattern Recognition with Fuzzy Objective Function Algorithms[M].Plenum Press, New York, 1981.
  • 5Dae-Won Kim, Kwang H,Lee, Doheon Lee. On cluster validity index for estimation of optimal number of fuzzy clusters[J].Pattern Recognition,2004 (37): 2009-2024.
  • 6Pham T, Wagner M, Clark D. Applications of genetic algorithms[J].Geostatistics, and Fuzzy C-Means Clustering to Image Segmentation,2001 IEEE.
  • 7A variable-length genetic algorithm for clustering and classification[J]. Pattern Recognition Letters, 1995(16):789-800.
  • 8COWGILL M C, HARVER J. A Genetic algorithm approach to cluster approach to cluster analysis analysis[J].Computers and Mathematics with Applications , 1999 (37):99-108.
  • 9Ramze M ezaee, Llelieveldt B P F, J H C Reiber. A New cluster validity index for the fuzzy C-mean[J]. Pattern Recognition Letters,1998(19):239-241.
  • 10Bezdk J C, Hath away R. Local Convergence of the fuzzy C-means a births[J]. Pattern Recognition, 1986,19(6).

共引文献162

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部