期刊文献+

Wavelet Estimation in Heteroscedastic Model Under Censored Samples 被引量:1

Wavelet Estimation in Heteroscedastic Model Under Censored Samples
原文传递
导出
摘要 Consider the heteroscedastic regression model Yi = g(xi) + σiei, 1 ≤ i ≤ n, where σi^2 = f(ui), here (xi, ui) being fixed design points, g and f being unknown functions defined on [0, 1], ei being independent random errors with mean zero. Assuming that Yi are censored randomly and the censored distribution function is known or unknown, we discuss the rates of strong uniformly convergence for wavelet estimators of g and f, respectively. Also, the asymptotic normality for the wavelet estimators of g is investigated. Consider the heteroscedastic regression model Yi = g(xi) + σiei, 1 ≤ i ≤ n, where σi^2 = f(ui), here (xi, ui) being fixed design points, g and f being unknown functions defined on [0, 1], ei being independent random errors with mean zero. Assuming that Yi are censored randomly and the censored distribution function is known or unknown, we discuss the rates of strong uniformly convergence for wavelet estimators of g and f, respectively. Also, the asymptotic normality for the wavelet estimators of g is investigated.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第12期2253-2268,共16页 数学学报(英文版)
基金 the National Natural Science Foundation of China(10571136) a Wonkwang University Grant in 2007
关键词 censored sample heteroscedastic regression model wavelet estimator strong unform convergence rate asymptotic normality censored sample, heteroscedastic regression model, wavelet estimator, strong unform convergence rate, asymptotic normality
  • 相关文献

参考文献4

二级参考文献18

  • 1王启华.基于截尾数据概率密度核估计的一些渐近行为(英文)[J].应用概率统计,1994,10(2):164-174. 被引量:6
  • 2王启华.截尾样本下回归函数加权核估计的一些收敛性质[J].应用数学学报,1996,19(3):338-350. 被引量:6
  • 3王启华,中国科学.A,1985年,25卷,8期,819页
  • 4王启华,数理统计与应用概率,1992年,7卷,4期,43页
  • 5Zheng Zukang,Acta Math Appl Sin,1987年,3卷,3期,231页
  • 6Wang, Z.: Statistical depth function and its applications, Master dissertation, Nankai University, 2003.
  • 7Zuo, Y. J., Serfling, R.: Structural properties convergence results for contours of sample statistical depth functions. Ann. Statist., 28, 483-499 (2000b).
  • 8Donoho, D. L., Huber, P. J.i The notion of breakdown point, in A Festschrift for Erich L. Lehmann (P. J.Bickel, K. A. Doksum and J. L. Hodges, Jr., eds.) 157-184, Wadsworth, Belmont, CA, 1983.
  • 9Lin, L.: Some statistical models with dependent data and analysis, Doctoral dissertation, Nankai University,2001.
  • 10Hart, J. D.: Nonparametric smoothing and lack-of-fit tests, Springer-Verlag, New York, Inc., 1997.

共引文献13

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部