期刊文献+

桁架材料弹性波带隙特性分析 被引量:4

Phononic Band Gaps and Vibrations in Truss-like Materials
下载PDF
导出
摘要 研究了弹性波在周期性桁架材料中的传播特性,并根据桁架材料的周期性特点和杆纵向振动模态,给出了基于单胞的桁架材料弹性波色散(dispersion)方程。分析了1维和2维问题的色散特性,研究了相应的弹性波带隙性质;以CAE分析软件为工具平台对桁架材料的带隙特性进行了数值仿真实验,给出了基于谐响应和特征频率变化特征的仿真实验方法。仿真实验确认了所分析的桁架材料的带隙特性,同时说明所用的仿真实验方法是可行的。 The propagation of elastic waves in infinite periodic truss-like material is investigated, and dispersion equation of truss-like material is obtained according to Floquet-Bloch theory and the longitudinal oscillation modes of bar. Dispersion characteristics of 1-D and 2-D problems are analyzed, and the corresponding phononic band gaps are investigated. The band gap characteristics of the truss-like material are verified by numerically simulated experiments with CAE software, where two methods, vibration response of finite periodic truss-like structure subjected to harmonic loading and characteristic change of eigenvalues based on modal analysis, are introduced. The band gaps are verified to show the effectiveness.
机构地区 大连理工大学
出处 《应用力学学报》 EI CAS CSCD 北大核心 2007年第2期213-218,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10572030 10332010) 973国家重大基础研究项目基金(2006CB601205) "新世纪优秀人才"资助计划(2004)
关键词 桁架材料 弹性波 带隙 truss-like material, elastic wave, phononic band gap
  • 相关文献

参考文献8

  • 1Brillouin L.Wave propagation in periodic structures[M].Second Edition.New York:Dover,1953.9:33,38.
  • 2Sigalas M,Kushwaha M S,Economou E N,et al.Classical vibrational modes in phononic lattices:theory and experiment[J].Z Kristallogr,2005,220(9/10):765-809.
  • 3Mathews J,Walker R.Mathematical methods of physics[M].Second Edition,USA:Benjamin-Cummings,1970:198-200.
  • 4Heckel M A.Investigations on the vibrations of grillages and other simple beam structures[J].J Acoust Soc Am,1964,36:1335-1343.
  • 5Martinsson P G,Movchan A B.Vibrations of lattice structures and phononic band gaps[J].Q J Mech Appl Math,2003,56(1):45-64.
  • 6Jensen J S.Phononic band gaps and vibrations in one-and two-dimensional mass-spring structures[J].Journal of Sound and Vibration,2003,266:1053-1078.
  • 7刘书田,曹先凡.零膨胀材料设计与模拟验证[J].复合材料学报,2005,22(1):126-132. 被引量:21
  • 8Diaz A R,Haddow A G,Ma L.Design of band-gap grid structures[J].Struct Multidisc Optim,2005,29(6):418-431.

二级参考文献15

  • 1刘书田,程耿东.基于均匀化理论的复合材料热膨胀系数预测方法[J].大连理工大学学报,1995,35(4):451-457. 被引量:31
  • 2刘书田,程耿东.基于均匀化理论的梯度功能材料优化设计方法[J].宇航材料工艺,1995,25(6):21-27. 被引量:14
  • 3Hassani B, Hinton E. A review of homogenization and topology optimization (Ⅰ): Homogenization theory for media with periodic structure [J]. Computers and Structures, 1998, 69(6): 707-717.
  • 4Bourdin B. Filters in topology optimization [J]. International Journal for Numerical Methods in Engineering, 2001, 50(9): 2143-2158.
  • 5Li Q, Steven G P, Xie Y M. A simple checkerboard suppression algorithm for evolutionary structural optimization [J].Structural and Multidisciplinary Optimization, 2001, 22(3): 230-239.
  • 6Zhou M, Shyy Y K, Thmoas H L. Checkerboard and minimum member size control in topology optimization [J].Structural and Multidisciplinary Optimization, 2001, 21(2): 152-158.
  • 7Mary T A, Evans J S O. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2Os [J]. Science, 1996, 272(5258): 90-92.
  • 8Hashin Z. Analysis of composite materials: A survey [J].Journal of Applied Mechanics, 1983, 50(3): 481 -505.
  • 9Rosen B W, Hashin Z. Effective thermal expansion coefficients and specific heats of composite materials [J]. International Journal of Engineering Science, 1970, 8(2): 157-173.
  • 10Lakes R. Materials with structural hierarchy (Cover story)[J]. Nature, 1993, 361(6412): 511-515.

共引文献20

同被引文献37

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部