期刊文献+

关联规则挖掘算法及其应用研究 被引量:36

An Association Rule Mining Algorithm and Its Application
下载PDF
导出
摘要 本文提出了一种适用于数字资源访问日志数据库的关联规则挖掘改进算法,它采用事务压缩和项目压缩相结合,而候选项目集及支持度计算是在每条事务压缩后通过联接产生,候选项目集采用关键字识别,省去了Apriori算法中的剪枝和字符串模式匹配步骤,可快速得到完整的频繁模式集。该算法特别适用于数字图书馆海量数字资源的个性化信息需求获取分析。 This paper proposes an enhanced algorithm which associates the Apriori algorithm with the transaction reduction and item reduction techniques.The candidate set generation and the support calculation of each itemset is created after each transaction is compressed and connected. The candidate set adopts the key word identification.The process of pruning and string pattern matching is removed from the Apriori algorithm,and it is especially suitable for the personal services of large digital libraries to gain personal information requirements.
出处 《计算机工程与科学》 CSCD 2007年第1期83-85,108,共4页 Computer Engineering & Science
关键词 关联规则 数字图书馆 个性化服务 APRIORI算法 事务压缩 项目压缩 association rule digital library personal service Apriori algorithm transaction reduction item reduction
  • 相关文献

参考文献6

二级参考文献12

  • 1HAN Jiawei KAMBER M.数据挖掘的概念与技术[M].北京:机械工业出版社,2001..
  • 2[1]Agrawal R, Srikant R. Fast algorithms for mining association rules[C]. In Proceeding of the 20th International Conference on Very Large Databases. 1994, 487-499
  • 3[2]Jong S P, Ming S C, Philip S Y. An effective hash based algorithm for mining association rules[C]. In Proceedings of the 1995 ACM SIGMOD International Conference On Management of Data. 1995, 24(2): 175-186
  • 4[3]Jiawei H, Micheline K. Data mining: concepts and techniques[C]. Morgan, 2001, 149-158
  • 5[1]R.Agrawal,T.Imielinski,and A.Swami.Mining association rules between sets of items in large databases.Proceedings Of ACM SIGMOD ,May.1993, PP.207-216.
  • 6[3]Fan Jiannua and Li Deyi. An Overview of Data Mining and Knowledge Discovery, J.of Comput. Sci.&Technol, Vol.13,No.4,Jul.1998,PP.348-368.
  • 7SCHAFER J B,KONSTAN J A,RIEDL J. Recommender systems in e-commerce[A]. In ACM Conference on Electronic Commerce (EC- 99) [C]. New York: ACM Press, 1999. 158-166.
  • 8KOHAVI R,PROVOST F. Applications of data mining to electronic commerce[J]. Data Mining and Knowledge Discovery, 2001,5(1-2):5-10.
  • 9AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases [ A].BUNEMAN P, JAJODIA S. In SIG MOD'93[C]. New York:ACM Press, 1993. 207- 216.
  • 10SAVASERE A,OMIECINSKI E,NAVATHE S. An efficient algorithm for mining association rules in larges databases[A].DAYAL U, GRAY P M D, NISHIO S. Proceedings of the 21th International Conference on Very Large Data Bases[C].San Mateo,CA. Morgan Kanfmann, 1995. 432-444.

共引文献216

同被引文献275

引证文献36

二级引证文献205

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部