期刊文献+

基于双变异算子的免疫规划 被引量:8

Immune programming based on double mutation operators
下载PDF
导出
摘要 针对进化规划的早熟收敛问题,借鉴免疫系统的应答机制,并结合进化规划与免疫机理,提出一种基于双变异算子的免疫规划算法(DMIP).该算法的核心在于采用全局柯西变异算子和局部高斯变异算子,通过保持种群的多样性和执行记忆保护以及弱小保护策略,保证了算法搜索的快速性和有效性.理论分析和仿真结果均表明,该方法能够有效地提高算法的全局及局部搜索能力,克服早熟现象. For the problem of premature convergence of conventional evolutionary programming, an immune programming based on double mutation operators (DMIP) is proposed. The algorithm combines evolutionary programming with immune mechanism in view of the mechanism of immune response. The key to the algorithm lies in using global Cauchy mutation operator and local Gauss mutation operator. In order to make the searching rapid and effective, DMIP maintains the diversity of population and performs memory protection and immature protection. The theoretical analysis and simulation results show that the algorithm can improve the ability of searching global optimization and overcome premature convergence effectively.
出处 《控制与决策》 EI CSCD 北大核心 2007年第12期1411-1416,共6页 Control and Decision
关键词 进化规划 免疫规划 全局柯西变异 局部高斯变异 多样性 Evolutionary programming Immune programming Global Cauchy mutation Local Gauss mutation Diversity
  • 相关文献

参考文献13

二级参考文献52

  • 1何大阔,李延强,王福利.并行启发式进化遗传算法[J].信息与控制,2001,30(S1):681-683. 被引量:2
  • 2王国俊.中外模糊系统研究之比较[J].国际学术动态,1994(4):48-49. 被引量:6
  • 3徐宗本,李国.解全局优化问题的仿生类算法(I)—模拟进化算法[J].运筹学杂志,1995,14(2):1-13. 被引量:39
  • 4何华灿,刘永怀,何大庆.经验性思维中的泛逻辑[J].中国科学(E辑),1996,26(1):72-78. 被引量:25
  • 5Zadeh L A.Fuzzy Sets[J].Information Control,1965; 8:338~353
  • 6Jang J S.ANFIS:Adaptive Network Based Fuzzy Inference Systems[J].IEEE Trans on Systems,Man,and Cybernetics,1993; 23 (3):665~685
  • 7Mastorocastas P A,Theocharis J B,Petridis V S.A Constrained Orthogonal Least-Squares Method for Generating TSK Fuzzy Models:Application to Short-Term Load Forecasting.Fuzzy Set and System,2001; 118:215~233
  • 8Nümberger A,Nauck D,Kruse R.Neuro-Fuzzy Control Based on the NEFCON-Model:Recent Developments[J].Soft Computing,1999; 2:168~182
  • 9Rutkowski L,Cpalka K.Flexible Neuro-Fuzzy Systems[J].IEEE Trans on Neural Networks,2003; 14(3):554~574
  • 10[1]Baeck T, Schwefel H-P. Evolutionary computation: an overview[C]. In: Proc of the Third IEEE Conference on Evolutionary Computation, Piscataway, NJ:IEEE Press,1996,20-29

共引文献157

同被引文献95

引证文献8

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部