摘要
针对进化规划的早熟收敛问题,借鉴免疫系统的应答机制,并结合进化规划与免疫机理,提出一种基于双变异算子的免疫规划算法(DMIP).该算法的核心在于采用全局柯西变异算子和局部高斯变异算子,通过保持种群的多样性和执行记忆保护以及弱小保护策略,保证了算法搜索的快速性和有效性.理论分析和仿真结果均表明,该方法能够有效地提高算法的全局及局部搜索能力,克服早熟现象.
For the problem of premature convergence of conventional evolutionary programming, an immune programming based on double mutation operators (DMIP) is proposed. The algorithm combines evolutionary programming with immune mechanism in view of the mechanism of immune response. The key to the algorithm lies in using global Cauchy mutation operator and local Gauss mutation operator. In order to make the searching rapid and effective, DMIP maintains the diversity of population and performs memory protection and immature protection. The theoretical analysis and simulation results show that the algorithm can improve the ability of searching global optimization and overcome premature convergence effectively.
出处
《控制与决策》
EI
CSCD
北大核心
2007年第12期1411-1416,共6页
Control and Decision
关键词
进化规划
免疫规划
全局柯西变异
局部高斯变异
多样性
Evolutionary programming
Immune programming
Global Cauchy mutation
Local Gauss mutation
Diversity