期刊文献+

AZ31镁合金板材等径角轧制变形规律研究 被引量:9

Deformation law of equal channel angular rolling for AZ31 magnesium alloy sheets
下载PDF
导出
摘要 对等径角轧制过程中AZ31镁合金板材的应力应变状态进行了分析,采用有限元对不同通道间隙下板材的应变状态进行了模拟,研究了不同通道间隙下镁合金板材晶粒取向的演变规律及其对晶粒取向的影响。结果表明,在等径角轧制过程中,板材在模具转角处受到剪应力和压应力的作用;随通道间隙的增加,板材的变形由剪切变形演变为剪切+弯曲变形,甚至弯曲变形;由于剪应力的作用,AZ31镁合金板材的晶粒取向由普通轧制所形成的基面取向转变为等径角轧制后的非基面取向,随着剪切变形量的减小,基面沿轧制方向的偏转角度也逐渐减小。 The state of stress and strain for AZ31 magnesium alloy sheets during equal channel angular rolling processing was analyzed and simulated by finite element method under different channel clearances. The evolvement of grain orientation for the sheets during this processing and the influence of channel clearance on it were investigated. The results indicate that the shear stress and compression stress are put on the sheet at the channel comer during equal channel angular rolling. And the shearing deformation on the sheet is transformed to shearing deformation plus bending deformation, even bending deformation with increasing of the channel clearance. The grain orientation of AZ31 magnesium alloy sheets produced by equal channel angular rolling process is evolved from (0002) basal plane orientation for the normally rolling sheet to non-basal plane orientation and the tilt angle between basal plane and rolling direction decreased with increasing of the channel clearance.
出处 《塑性工程学报》 EI CAS CSCD 北大核心 2007年第4期127-132,共6页 Journal of Plasticity Engineering
基金 国家自然科学基金资助项目(50674043) 湖南省科技重大专项计划资助项目(04GK10081)
关键词 等径角轧制 AZ31镁合金板材 变形规律 有限元模拟 晶粒取向 equal channel angular rolling AZ31 magnesium alloy sheets deformation law finite element method simulation grain orientation
  • 相关文献

参考文献2

二级参考文献33

  • 1[1]Mukai T, Yamanoi M, Watanabe H, et al. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure [J ]. Scripta Materialia, 2001, 45(1): 89-94.
  • 2[2]Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg3Al-Zn alloy sheet[J]. Materials Science and Engineering, 2003,A339(1 - 2): 124 - 132.
  • 3[4]Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science, 2000, 45(2):103 - 189.
  • 4[5]Lee S, Berbon P B, Furukawa M, et al. Developing superplastic properties in aluminum alloy through severe plastic deformation[J]. Materials Science and En-gineering, 1999, A272(1): 63 - 72.
  • 5[6]Ferrasse S, Segal V M, Aartwig K T, et al. Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion[J]. Metallurgical and Materials Transactions A,1997, 28(4): 1047-1057.
  • 6[7]Kim W J, Kim J K, Choo W Y, et al. Large strain hardening in Ti-V carbon steel processed by equal channel angular pressing[J]. Materials Letters, 2001,51(2): 177 - 182.
  • 7[8]Mabuchi M, Iwsaki H. Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE[J]. Scripta Materialia, 1997, 36(6): 681-686.
  • 8[9]Yamashita A, Horita Z, Langdon T G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation[J]. Materials Science and Engineering, 2001, A300 (1 - 2): 142 -147.
  • 9[10]Kim W J, An C W, Kim Y S, et al. Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing [J ].Scripta Materialia, 2002, 47(1): 39-44.
  • 10[11]Furukawa M, Horita Z, Nemoto M, et al. Processing of metals by equal-channel angular pressing[J].Journal of Materials Science, 2001, 36(12): 2835-2843.

共引文献41

同被引文献99

引证文献9

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部