期刊文献+

有限元研究肌肉力对胸腰椎节段椎体应力的影响 被引量:9

Impacts of muscle strength on vertebral body stress in the thoracolumbar spine: A finite element study
下载PDF
导出
摘要 目的研究胸腰椎节段(T12-L1-L2)屈曲过程中躯干肌肉力的大小及其对椎体应力的影响。方法建立T12-L1-L2节段三维有限元模型,体外生物力学实验资料验证模型有效性。以轴向随动载荷代替节段间局部肌肉力作用。分别在T12-L1-L2节段屈曲0°、5°、10°、15°时,模拟上身重力(260N)、竖脊肌力以及随动载荷(0、100、200N)作用,观察竖脊肌力、椎体表面von Mises应力变化。结果随着T12-L1-L2节段屈曲角度增大,竖脊肌力和椎体表面von Mises应力随之逐渐增大,而随动载荷对椎体表面von Mises应力影响不明显。如果忽略所有肌肉力作用,模型在纯弯矩作用下屈曲相同角度,椎体表面von Mises应力明显降低。结论脊柱生物力学研究不能忽视周围肌肉力的作用,屈曲角度和背侧肌肉力对椎体应力有明显影响。 Objective To investigate the trunk muscle strengths during flexion of the thoracolumbar spine (T12, L1 & L2) and to determine their impacts on vertebral body stress. Methods A three-dimensional finite element model of the thoracolumbar spine was created and validated using experimental data from in vitro measurements on cadaver specimens. We used caudal follower load as an alternative to intra-segmental muscle strength. The model was loaded with mimicked upper body weight (260 N), compressive follower loads (0, 100, and 200 N, respectively) to account for the local muscle strengths, and a force in the M. erector spinae. The force in the M. erector spinae and yon Mises stress in the vertebral body were estimated during flexion at 0°, 5°, 10°, and 15° in the thoracolumbar spine. Results The flexion angle and the strengths in the M. erector spinae showed strong impacts on the stress in vertebral bodies while the follower loads did not. Given that all the muscle strengths were negligible, the stress in the vertebral body would considerably be reduced when a pure moment is applied. Conclusion This study confirms that the muscle strengths should not be neglected for biomechanical studies of the spine.
出处 《中国药物与临床》 CAS 2007年第12期904-907,共4页 Chinese Remedies & Clinics
基金 山西医科大学校青年基金资助项目(200503)
关键词 胸椎 腰椎 肌收缩 应力 物理 有限元分析 Thoracic vertebrae Lumbar vertebrae Muscle contraction Stress, mechanical Finite element analysis
  • 相关文献

参考文献9

  • 1Bogduk N, Macintosh JE, Pearcy MJ. A universal model of the lumbar back muscles in the upright position. Spine, 1992, 17(8): 897-913.
  • 2Goel VK, Ramirez SA, Kong W, et al. Cancellous bone Young's modulus variation within the vertebral body of a ligamentous lumbar spine-application of bone adaptive remodeling concepts. J Biomech Eng, 1995, 117(3): 266-271.
  • 3Sharma M, Langrana NA, Rodriguez j. Role of ligaments and facets in lumbar spinal stability. Spine, 1995, 20(8): 887-900.
  • 4Silva M j, Keaveny TM, Hayes WC. Load sharing between the shell and centrum in the lumbar vertebral body. Spine, 1997, 22 (2): 140-150.
  • 5Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine, 2003, 28( 10): 991-996.
  • 6Panjabi MM, Oxland TR, Lin RM, et al. Thoracolumbar burst fracture: a biomechanical investigation of its multidirectional flexibility. Spine, 1994, 19(5): 578-585.
  • 7Wilke HJ, Rohlmann A, Neller S, et al. ISSLS Prize Winner: a novel approach to determine trunk muscle forces during flexion and extension. A comparison of data from an in vitro experiment and in vivo measurements. Spine, 2003, 28(23): 2585-2593.
  • 8Patwardhan AG, Havey RM, Meade KP, et al. A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine, 1999, 24(10): 1003-1009.
  • 9Rohlmann A, Neller S, Claes L, et al. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine, 2001, 26(24): E557-E561.

同被引文献126

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部