期刊文献+

基于小波包分解的声目标识别 被引量:4

The Study of Theory in Acoustic Target Identification of Battle Field
下载PDF
导出
摘要 小波变换是处理非平稳信号的一个有力工具,研究了基于小波包分析的声信号特征提取方法,并应用该方法对直升机等4种目标的声信号进行了特征提取,降低了特征向量的维数。采用设计改进的BP神经网络分类器对声目标进行分类,分类结果准确率高,获得满意的实验效果。 Wavelet theory is a useful tool for processing the non -placement signal, this paper analyzes the feature extraction method of battlefield acoustic signal based on the wavelet packet analysis theory. Features of four types of acoustic signals of the battlefield target are extracted and low - dimension feature vectors are obtained by using this technique. BP neural network classifier is designed for the acoustic target classification. Satisfactory experimental results are obtained with highly classification accuracy.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2007年第6期40-43,共4页 Journal of Air Force Engineering University(Natural Science Edition)
基金 陕西省自然科学研究项目(2004F36)
关键词 小波包分析 特征提取 分类器 目标识别 wavelet packet analysis feature extraction classifier target identification
  • 相关文献

参考文献7

二级参考文献16

  • 1陆燕芳,何巧,罗晓松,李兆利,雷迅.火炮声探测技术研究报告[J].电声技术,1993,17(3):2-6. 被引量:8
  • 2李在庭,高德勇,何遵文.直升机声信号特征提取和识别技术[J].兵工学报,1996,17(1):55-59. 被引量:19
  • 3章新华 王骥程 等.基于小波变换的舰船辐射噪声特征提取[J].声学学报,1997,22(2):139-144.
  • 4[1]唐狄毅.飞机噪声基础[M].西安:西北工业大学出版社,1996.
  • 5[3]Milios E E,Nawab SH.Signal abstraction in signal processing software[J].IEEE Trans ASSP,1989,37(6):913-928.
  • 6宗孔德 胡广书.数字信号处理[M].清华大学出版社,1990.210-213.
  • 7Tian Yuxin,Qi Hairong.Target detection and classification using seismic signal processing in unattended ground sensor systems[A].Acoustics,Speech,and Signal Processing,2002.Proceedings.(ICASSP '02) [C].IEEE International Conference on,2002,4:4172.
  • 8Wu Huadong,Mel Siegel.Vehicle sound signature recognition by frequency vector principal component analysis[J].IEEE Transaction on Instrumentation and Measurement,1999,48(5):1005-1009.
  • 9边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..
  • 10焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..

共引文献40

同被引文献41

  • 1王艳,李智.基于最佳小波包基的边海防声目标识别[J].四川大学学报(工程科学版),2011,43(S1):151-154. 被引量:5
  • 2陈虎虎,钟方平,许学忠,董明荣.基于支持向量机的低空飞行目标声识别[J].系统工程与电子技术,2005,27(1):46-48. 被引量:11
  • 3陈丹,李京华,黄根全,许俊峰.基于主分量分析的声信号特征提取及识别研究[J].声学技术,2005,24(1):39-41. 被引量:12
  • 4Wu H, Mendel J. Multicategory classification of ground vehicles based on their acoustic emissions [ C ]// Procof SPIE in Unattended/Unmanned Ground, Ocean, and Air Sensor Technologies and Applications Ⅵ 5417, 2004:31 -42.
  • 5William P E, Hoffman M W. Efficient sensor network vehicle classification using peak harmonics of acoustic emissions[ C ]// Unattended Ground, Sea, and Air Sensor Technologies and Applications X, Proc. of SPIE,2008 : 1 -12.
  • 6Duarte M F, Hu Y H. Vehicle classification in distributed sensor networks [ J ]. Journal of Parallel and Distributed Computing, 2004,64 ( 7 ) :826 -838.
  • 7Gramann R A, Bennett M B, O' Brien T D. Vehicle and personnel detection using seismic sensors [ C ] // Sensors, C^3 I, Information, and Training Technologies for Law Enforcement,1998:74-85.
  • 8Wellman M C, Srour N, Hills D B. Feature extraction and fusion of acoustic and seismic for target identification[ C ]//Peace and Wartime Applications and Technical Issues for Unattended Ground Sensors, 1997 : 139 -145.
  • 9Wang Hongliang, Wang Yang, Zhang Wendong, et al. Feature extraction of acoustic signal based on wavelet analysis [ C ]//Embedded Software and Systems Symposia,2008:437-440.
  • 10Georgios P, John N. Vehicle classification in sensor networks using time-domain signal processing and neural networks [ J ]. Microprocessors and Microsystems,2007(31 ) :381 -392.

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部