期刊文献+

可液化地层中地铁隧道地震响应数值模拟及其试验验证 被引量:40

Numerical modeling of subway tunnels in liquefiable soil under earthquakes and verification by centrifuge tests
下载PDF
导出
摘要 饱和砂土地层中的地下结构在地震作用下可能因地基液化而发生破坏。采用动力固结两相体有限元程序DIANA SWANDYNE-II对可液化地层中地铁隧道结构的地震响应进行了模拟,并与动力离心模型试验结果对比以验证其效果。选用广义塑性模型Pastor-Zienkiewicz III模拟可液化土的动力特性,基于Biot方程的u–p形式建立有限元方程,进行饱和土动力固结的耦合计算。计算表明,该数值模型可较合理地模拟地下结构的地震反应特性,计算结果与试验现象基本相符。地基液化引起的结构附加内力及隧道上浮主要受地基液化时土水压力变化的影响,截断墙的设置可有效减轻隧道结构的上浮。 Underground structure in saturated sandy soil might be subject to severe damage due to seismic liquefaction. Numerical simulation for earthquake response of subway tunnels in liquefiable soil was conducted by use of finite element program DIANA SWANDYNE-II and the numerical model was verified by some centrifuge test results. A generalized plasticity model, Pastor-Zienkiewicz III, was used to model the dynamic behavior of saturated soil. Finite element procedure based on the u-p form of Biot equations was employed to perform the coupling analysis. It was shown that the numerical model could simulate the earthquake response of subway tunnels in liquefiable soil reasonably. Liquefaction induced ternal force in tunnel segments and its uplift were mainly influenced by the excess pore pressure and the earth pressure increment during earthquakes. Cut-off walls could reduce the uplift of subway tunnels effectively.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2007年第12期1815-1822,共8页 Chinese Journal of Geotechnical Engineering
基金 国家自然科学基金资助项目(50378050) 北京市自然科学基金重点项目(8061003)
关键词 动力有限元 砂土液化 地下结构 离心机试验 截断墙 dynamic finite element method soil liquefaction underground structure centrifuge test cut-off wall
  • 相关文献

参考文献9

  • 1佘才高.南京地铁南北线隧道地基的地震液化问题[J].城市轨道交通研究,2001,4(3):38-42. 被引量:6
  • 2CHOU H S, YANG C Y, HSIEH B J, CHANG S S. A study of liquefaction related damages on shield tunnels[J]. Tunneling and Underground Space Technology, 2001 (16): 185 - 193.
  • 3PASTOR M, ZIENKIEWICZ O C, CHAN A H C. Generalized plasticity and the modeling of soil behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14: 151-190.
  • 4ZIENKIEWICZ O C, CHAN A H C, PASTOR M, SCHREFLER B A, SHIOMI T. Computational geomechanics with special reference to earthquake engineering[M]. New York: John Wiley & Sons, 1998.
  • 5CHAN A H C. User manual for DIANA SWANDYNE-Ⅱ[R]. Glasgow, University of Glasgow, 1989.
  • 6CHAN A H C, FAMIYESIN O O, MUIR W D. Numerical prediction for model No. 1 [C]// Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems. Rotterdam: AA Balkema, 1994:87 - 108.
  • 7刘华北,宋二祥.可液化土中地铁结构的地震响应[J].岩土力学,2005,26(3):381-386. 被引量:57
  • 8KATONA M G, ZIENKIEWICZ O C. A unified set of single step algorithms Part 3: The Beta-m method, a generalization of the Newmark scheme[J]. International Journal for Numerical Methods in Engineering, 1985, 21:1345 - 1359.
  • 9刘光磊,龚成林,宋二祥,刘华北.可液化地层中地铁隧道结构动力离心模型试验[C]//第七届全国土动力学学术会议论文集.北京:清华大学出版社,2006:286-291.

二级参考文献14

  • 1Hamada M, Isoyama R, Wakamatsu K. Liquefaction induced ground displacement and its related damage to lifeline facilities[J]. Soils and Foundations, 1996, 36 (1): 81-97.
  • 2Smith I M. A overview of numerical procedures used in VELACS project[A]. Arulanandan K, Scott R F. Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems[C]. Rotterdam: Balkema A A, 1994.
  • 3Hushmand B, Scott R F, Crouse C B. Centrifuge liquefaction tests in a laminar box[J]. Geotechnique, 1988, 38: 253-262.
  • 4Hashash Y M A, Hook J J, Schmidt B, Yao J. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293.
  • 5Ling H I, Mohri Y, Kawabata T, Liu H, Burke C, Sun L. Centrifugal modeling of seismic behavior of large-diameter pipe in liquefiable soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineering, 2003, 129(12): 1 092-1 101.
  • 6Chan A H C. User manual for Diana Swandyne-Ⅱ[R]. Glasgow: University of Glasgow, 1989.
  • 7Katona M G, Zienkiewicz O C. A unified set of single step algorithms Part 3: The Beta-m method, a generalization of the newmark scheme[J]. International Journal for Numerical Methods in Engineering, 1985, 21: 1 345-1 359.
  • 8Zienkiewicz O C, Chan A H C, Pastor M, Schrefler B A, Shiomi T. Computational Geomechanics with Special Reference to Earthquake Engineering[M]. New York: John Wiley & Sons, 1998.
  • 9Chan A H C, Famiyesin O O, Muir W D. Numerical prediction for model No. 1[A]. Arulanandan K, Scott R F. Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems[C]. Rotterdam: Balkema A A, 1994. 87-108.
  • 10Madabhushi S P G, Zeng X. Seismic response of gravity quay wall. Ⅱ: numerical modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineering, 1998, 124(5): 418-427.

共引文献60

同被引文献324

引证文献40

二级引证文献179

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部