期刊文献+

通过RAFT聚合方法合成具有高强度和高溶胀率的纳米水凝胶 被引量:1

Nanocomposite Hydrogels with High Mechanical Strength and High Swelling Ratio by RAFT Polymerization
下载PDF
导出
摘要 为了得到具有高强度和高溶胀率的纳米水凝胶(NCgels),N-异丙基丙烯酰胺通过可逆加成断裂链转移(RAFT)聚合的方法,插层在含有质量分数为0.25%~15%的可扩展的有机化的蒙脱土(Clay-S)层间并交联。结果表明,与传统水凝胶相比,该水凝胶的强度和溶胀性能得到了很大提高,并且对温度的变化具有较快的响应速率。以质量分数为5%的蒙脱土,链转移剂的质量分数为0.5%制备的纳米水凝胶为例,该水凝胶在20℃的溶胀率为450,而传统水凝胶在相同温度时的溶胀率仅为20;该水凝胶在1min内失去75%的水,在4min内失去约90%的水,而传统水凝胶在15min内仅失去66%左右的水。 Nanocomposite hydrogels (NC gels) was prepared based on poly (N-isopropylacrylamide) (PNIPAM) containing 0. 25% - 15% of the expandable synthetic hectorite Laponite XLS (Clay -S) by reversible addition fragmentation chain transfer(RAFT) polymerization. The swelling behaviors were investigated and the hydrogels by RAFT polymerization (RAFT gels ) show accelerated shrinking kinetics and higher swelling ratio compared with conventional hydrogel(CGel). It could be attributed to the presence of dangling chains mainly caused by chain transfer agent ( CTA), which could retard the crosslinking reaction rate greatly. Taking hydrogel prepared with 5% clay and 0. 5% CTA as an example, the swelling ratio of the hydrogel was 450 at 20 ℃, whereas that of conventional hydrogel was 20 at the same temperature;the hydrogel lost 75% water within 1 min and about 90% water within 4 mins,whereas conventional hydrogel lost only about 66% water within 15 mins.
出处 《精细化工》 EI CAS CSCD 北大核心 2007年第12期1158-1162,共5页 Fine Chemicals
基金 中国科学院"百人计划"资助项目~~
关键词 纳米水凝胶 可逆加成断裂链转移聚合 蒙脱土 高强度 功能材料 nanocomposite hydrogels RAFT clay high mechanical strength functional materials
  • 相关文献

参考文献12

  • 1Nayak S,Debord S B,Lyon L A. Investigations into the deswelling dynamics and thermodynamics of thermoresponsive microgel composite films [ J]. Langmuir,2003,19:7374 - 7379.
  • 2Lynch I, Dawson K A. Synthesis and characterization of an extremely versatile structural motif called the " plum-pudding" gel[J]. Journal Physical Chemistry B,2003,107:9629-9635.
  • 3Lynch I, Dawson K A. Effect of a polymeric additive on the poresize distribution and shrinking process of a hydrogel network [J ]. Macromolecular Chemistry and Physics,2002,204 ( 3 ) :443 - 450.
  • 4Zhang J T, Huang S W, Xue Y N,et al. Poly (N-isopropylacrylamide) nanoparticle-incorporated PNIPAAm hydrogels with fast shrinking kinetics[J]. Macromolecular Rapid Communications, 2005,26 : 1346 - 1352.
  • 5Mitsukami Y, Donovan M S, Lowe A B, et al. Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT [J].Macromolecules ,2001,34:2248 - 2256.
  • 6lsaure F, Connack P A G, Graham S, et al. Synthesis of branched poly( methyl methacrylate)s via controlled/living polymerisations exploiting ethylene glycol dimethacrylate as branching agent[ J ]. Chemical Communications ,2004,9 : 1138 - 1143.
  • 7Qunfeng Liu, Ping Zhang, Aixiang Qin, et al. Poly (N-isopropylacrylamide) hydrogels with improved shrinking kinetics by RAFT polymerization[ J ]. Polymer ,2006,47:2330 - 2336.
  • 8Shibayama M, Karino T, Miyazaki S, et al. Small-angle neutron scattering study on uniaxially stretched poly(N-isopropylacrylamide) -clay nanocomposite gels [ J].Macromolecules, 2005,38 10772 - 10781.
  • 9Haraguchi K, Li H J Mechanical. Properties and structure of polymer-clay nanocomposite gels with high clay content [ J ]. Macromolecules ,2006,39 : 1898 - 1905.
  • 10Haraguchi K,Li H J. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels[J].Angewandte Chemic International Edition, 2005, 44(40) :6500-6504.

同被引文献13

  • 1Zohuriaan-Mehr M J,Pourjavadi A,Salimi H. Protein-and homo poly (amino acid)-based hydrogels with super-swelling properties[J].{H}Polymers for Advanced Technologies,2009.655-671.
  • 2Yang Jun,Wang Fang,Tan Tianwei. Degradation behavior of hydrogel based on crosslinked poly (aspartic acid)[J].{H}Journal of Applied Polymer Science,2010.178-185.
  • 3Yang Jun,Wang Fang,Tan Tianwei. Controlling degradation and physical properties of chemical sand fixing agent-poly (aspartic acid) by crosslinking density and composites[J].{H}Journal of Applied Polymer Science,2009.1557-1563.
  • 4Liu Changhua,Gan Xianxue,Chen Yanqing. A novel pH-sensitive hydrogels for potential colon-specific drug delivery:characterization and in vitro release studies[J].{H}Starch-Starke,2011.503-511.
  • 5Liu Miaomiao,Su Haijia,Tan Tianwei. Synthesis and properties of thermo-and pH-sensitive poly (N-isopropylacrylamide)/poly (aspartic acid) IPN hydrogels[J].{H}Carbohydrate Polymers,2012.2425-2431.
  • 6Yang Jun,Fang Li,Wang Fang. Preparation and characterization of a novel pH-,thermo-and ionic strengthresponsive hydrogels based on Xanthan Gum-poly(aspartic acid)[J].{H}Journal of Applied Polymer Science,2007.539-546.
  • 7Zhao Ying,Tan Tianwei. Poly(aspartic acid) super-absorbent resin produced by chemical crosslinking and physical freeze/ thawing[J].{H}Macromolecular Chemistry and Physics,2006.1297-1305.
  • 8Yoshihiro Irizato,Makoto Sukegawa,Toshio Katoh. Production process of cross-linked polyaspartic acid resin[P].US:6072024,2000.
  • 9凌有道,吕满庚.温度和pH双重敏感性水凝胶的制备及表征[J].精细化工,2008,25(6):545-549. 被引量:7
  • 10冷一欣,黄春香,朱晓玉,李建华,徐玉峰.聚天冬氨酸对肥料与农药的增效作用[J].江苏农业科学,2009,37(2):263-264. 被引量:16

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部