期刊文献+

一种强光背景下小目标图像的增强方法 被引量:3

Image enhancement method of small target in strong light level background
下载PDF
导出
摘要 针对强光背景下小目标图像特点,提出了一种图像增强算法。在分析了归一化不完全Beta函数取值特征后,找出了Tubbs用于拟合的α、β值在原图极亮、极暗情况下产生跳变的原因,给出了其服从连续变化规律的解释,并在采取模拟退火算法求取其最佳值时,给出了相应处理办法,从而确定了最佳变换曲线,实现原图像的自适应增强;然后采取基于三帧累加图像流处理的办法来累积小目标能量及平滑噪声。仿真实验结果表明,该方法能有效实现强光背景下小目标图像的增强。 An algorithm for image enhancement of small target in strong light level background is proposed in this paper. After analyzing the characters of choosing parameters for incomplete Beta's function, the reasons of the jumpiness for α and β' s value which Tubbs use to estimate the transformation in the condition of the exceedingly bright or dark original image are founded. It is explained that their changes are continuous. Then, the processing way for solving their best value by simulated annealing algorithm is given. So the optimum corresponding transformation curve is obtained, and the aim of the original picture's self-adaptive enhancement is achieved. Furthermore, by using the way of images stream based on adding three continuous frames, the small target energy is enhanced and the noise energy is smoothed down .The experimental results show that the method can enhance effectively small target images in strong light level background.
出处 《光电工程》 EI CAS CSCD 北大核心 2007年第12期87-91,123,共6页 Opto-Electronic Engineering
基金 国防预研基金资助项目
关键词 强光背景 低对比度图像 图像增强 BETA函数 模拟退火算法 strong light level background low contrast image image enhancement Beta function simulated annealing algorithm
  • 相关文献

参考文献6

二级参考文献9

  • 1崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 2[1]Varshney P K. Multisensor data fusion [J]. Electronics & Communication Engineering Journal, 1997, 9(6): 245~253.
  • 3[2]Burt P J, Kolczynski R J. Enhanced image capture through fusion [A]. The Fourth International Conference on Computer Vision, Berlin, Germany, 1993.
  • 4[3]Toet A. Multiscale contrast enhancement with applications to image fusion [J]. Optical Engineering, 1992, 31(5): 1 026~1 031.
  • 5[4]Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674~693.
  • 6[5]Li H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform [J]. Graphical Models and Image Processing, 1995, 57(3): 235~245.
  • 7[6]Li S T, James T K, Wang Y N. Multifocus image fusion using artificial neural networks [J]. Pattern Recognition Letters, 2002, 23(8): 985~997.
  • 8[7]Maes F, Collignon A, Vandermeulen D, et al. Multimodality image registration by maximization of mutual information [J]. IEEE Transactions on Medical Imaging, 1997, 16(2):187~198.
  • 9沈贵明,刘劲松.应用小波变换技术的图象噪声消除新方法[J].厦门大学学报(自然科学版),2000,39(5):612-616. 被引量:7

共引文献24

同被引文献25

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部