期刊文献+

对顶四面锥尖间光增强的数值模拟

Numerical Simulation of light Enhancement Between Opposite Vertical Pyramidal Tips
下载PDF
导出
摘要 为了探索对顶四面锥尖在分子损伤和检测中的应用,利用处理色散介质的时域有限差分法((FD)2TD)计算和分析了对顶四面锥尖之间的光增强,研究了不同锥体长度和激励光波长对光增强的影响.模拟表明:在相同平面激励光波长下,光增强效果随锥体长度而改变,且在一定长度范围内有最佳值;在相同的对顶四面锥结构下,长波长平面激励光波引起的光增强较大.这些性质的得出,可以为对顶四面锥尖在生物学中的应用提供理论依据. In order to understand the application of opposite vertical pyramidal tips in single molecule damnification and measuring system, enhancement of opposite vertical pyramidal tips was analyzed and computed. Also, influence of different pyramidal tip lengths and excitation light wave lengths on light enhancement was studied. It shows that with the excitation of same wave lengths, light enhancement varies with pyramidal tip lengths and optimized value of light enhancement is obtained. Furthermore, with the same diagram of opposite vertical pyramidal tips, light enhancement is larger with the excitation of longer wave lengths. All these properties obtained above can provide foundation on the application of opposite vertical pyramidal tips in biology science.
出处 《常熟理工学院学报》 2007年第10期48-50,共3页 Journal of Changshu Institute of Technology
关键词 四面锥尖 (FD)^2TD 分子损伤和检测 pyramidal tip, (FD)^2TD, molecule damnification and measurement
  • 相关文献

参考文献4

  • 1Luebbers R J, Hunsberger F P, Kunz K S. A frequency dependent finite-difference time-domain formulation for transient propagation in plasma[ J ]. IEEE Trans on Antennas and Propagation, 1991,39( 1 ) :29 -34.
  • 2Luebbers R J, Hunsberger F P, Kunz K S, et al. A frequency dependent finite-difference time-domain formulation for dispersive materials [ J ]. IEEE Trans on Electromagnetic Compat, 1990,32 (3) :222 - 227.
  • 3Johnson P B, Christy R W. Optical constant of the nobel metal[ J]. Phys Rev B,1972, (6) :4370 -4379.
  • 4汪国平.表面等离子体激元纳米集成光子器件[J].物理,2006,35(6):502-507. 被引量:10

二级参考文献34

  • 1Wang B,Wang G P.Appl.Phys.Lett.,2006,23:388
  • 2Liu Z-W,Wei Q-H,Zhang X.Nano Letters,2005,5:957
  • 3Wang B,Wang G P.Appl.Phys.Lett.,2004,85:3599
  • 4Wang G P,Wang B.J.Opt.Soc.Am.B,2006(accepted for publication)
  • 5Sarid D.Phys.Rev.Lett.,1981,47:1927
  • 6Krenn J R,Weeber J-C.Phil.Trans.R.Soc.Lond.A,2004,362:739
  • 7Nezhad M P,Tetz K,Fainman Y.Opt.Express,2004,12:4072
  • 8Kitson S C,Barnes W L,Sambles J R.Phys.Rev.Lett.,1996,77:2670
  • 9Bozhevolnyi S I,Erland J,Leosson K et al.Phys.Rev.Lett.,2001,86:3008
  • 10Takahara J,Yamagishi,S Taki H et al.Qpt.Lett.,1997,22:475

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部