期刊文献+

一个包含Smarandache LCM比率数列的极限问题 被引量:1

A limit problem involving the Smarandache LCM ration sequences
下载PDF
导出
摘要 目的研究一个包含Smarandache LCM比率数列的极限问题。方法利用初等解析方法。结果证明。结论给出一个包含Smarandache LCM比率数列的极限定理。 Aim To study a limit problem involving the Smarandache LCM ration sequences.Methods Using the elementary methods and analytic methods.Results It was proved that lim n→∞[T(n,n)]^n/1=lim n→∞[L(n)]^n/1=e.Conclusion A limit theorem involving the Smarandache LCM ration sequences was given.
作者 潘晓玮
机构地区 西北大学数学系
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期708-710,共3页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(60472068)
关键词 SMARANDACHE LCM比率数列 SMARANDACHE LCM数列 极限问题 Smarandache LCM ration sequence Smarandache LCM sequence limit problem
  • 相关文献

参考文献7

  • 1MURTHY A.Some notions on least common multiples[J].Smarandache Notions Journal,2001,(12):307-308.
  • 2MAOHUA L.Two formulas for Smarandache LCM ratio sequences[J].Smarandache Notions Journal,2004,(12):183-185.
  • 3WANG T.Aformula for Smarandache LCM ration sequence[J].Research on Smarandache Problems in Number Theory,2005,2:45-46.
  • 4WANG T.Two formulas for Smarandache LCM ration sequences[J].Scientia Magna,2005,1(1):109-113.
  • 5APOTOL T M.Introduction to Analytic Number Theory[M].New York:Springer-Verlag,1976.
  • 6潘承洞 潘承彪.解析数论基础[M].北京:科学出版社,1999..
  • 7吕志宏.一个包含Eu ler函数的方程[J].西北大学学报(自然科学版),2006,36(1):17-20. 被引量:28

二级参考文献7

  • 1GUPTA H.On a problem of Erdos[J].Amer Math Monthly,1950,57:326-329.
  • 2ERDOS P.On a conjecture of Klee[J].Amer Math Monthly,1951,58:98-101.
  • 3ERDOS P.On the normal number of prime factors of p-1 and some related problems concerning Euler's ψ function[J].Quart J Math Oxford Ser,1935,6:205-213.
  • 4WOOLRIDGE K.Values taken many times by Euler's phi-function[ J].Proc Amer Math Sco,1979,76:229-234.
  • 5POMERANCE.Popular values of Euler's function[J].Mathematika,1980,27:84-89.
  • 6MASAI P,VALETTE A.A lower bound for a counterexamole to Carmichael's conjecture[ J].Boll Un Mat Ital,1982,A(6)1:313-316.
  • 7TOM M Apstol.Introduction to Analytic Number Theory[M].New York:Springer-Verlag,1976.

共引文献63

同被引文献7

  • 1SMARANDACHE F.Only Problems,Not Solutions[M].Chicago:Xiquan Publishing House,1993.
  • 2FELICE R.A set of new Smarandache functions,sequences and conjectures in number theory[M].Lupton:American Research Press,2000.
  • 3LE Mao-hua.On the pseudo-Smarandache-squarefree func-tion[J].Smarandache Notions Journal,2002,13:229-236.
  • 4LIU Hua-ning,GAO Jing.Research on Smarandache prob-lems in number theory[M].Chicago:Xiquan Publ House,2004:9-11
  • 5LE Mao-hua.Two function equations[J].Smarandache Notions Journal,2004,14:180-182.
  • 6APOSTOL T M. Introduction to Analytic Number Theory [ M ]. New York: Springer-Verlag, 1976.
  • 7陈国慧.一个包含无k次方幂函数的方程[J].西北大学学报(自然科学版),2007,37(5):694-696. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部