期刊文献+

SMART:基于数据流技术的电信网络流量监控系统 被引量:2

SMART: a system for online monitoring large volumes of network traffic
下载PDF
导出
摘要 大多数国内电信运营商现有的网络流量监控系统的分析都是基于数据文件的操作模式,处理速度远跟不上大量数据到达的速度。基于这种情况,提出了基于数据流技术来实现在线网络流量监控系统SMART。SMART收集多个路由器发送的NetflowV5或者V9格式的数据,并将其转换成用户定义的监控流;以滑动窗口的方式查询输出流量构成中Top-k频繁数据信息;监测网络流量突变;以可视化的图形和报表形式显示结果。SMART先进的数据流算法技术基础和完整的系统框架设计使得它在上海电信高效稳定的7*24h运行。 Monitoring systems deployed in telecom operators are usually too slow because of their disk-based processing approach. To address this problem, an online network traffic monitoring system, named SMART, was designed and developed. The system converts different formats of raw net flow data (Netflow V5 or V9) to user-defined control flows through combination and filtering. It can compute top-k frequent flows with sliding window, detect burst on arbitrary attributes, and present results visually to users. The system could be used to replace the traditional of/line monitoring system used in Shanghai Telecom. The basis of advanced streaming algorithms and the design of robust system architecture enable SMART to achieve good performance.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2007年第11期27-31,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(60673134) 上海市电信公司(ShanghaiTelecomCo. LTD)网络流量监测数据处理工具开发项目
关键词 数据流系统 网络流量监控 电信 data stream system network traffic monitoring telecom
  • 相关文献

参考文献6

  • 1Cisco. Cisco IOS Nettlow introduction[ EB/OL]. (2006-04-05) [ 2006-04-15 ]. http://www. cisco. com/go/netflow.
  • 2Mark Fullmer. Flow-tools[ EB/OL]. (2006-03-01) [ 2006-04- 15 ]. http://www. splintered.net/sw/flow-tools/does/flow-tools. html.
  • 3CARNEY D, QETINTEMEL U, CHERNIACK M, et al. Monitoring streams - a new class of data management applications [C]// Proceedings of 28th International Conference on Very Large Data Bases, August 20-23, 2002. Hong Kong, China: Morgan Kaufmann, 2002 : 215-226.
  • 4ARASU A, MANKU G S. Approximate counts and quantiles over sliding windows [ C ]// A. Deutsch. Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 14-16, 2004. Paris, France : ACM, 2004: 286-296.
  • 5QIN S, QIAN W, ZHOU A. Approximately processing multigranularity aggregate queries over data streams[ C]// Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA: IEEE Computer Society, 2006-67.
  • 6YU J X, CHONG Z, LU H , et al. False positive or false negative: Mining frequent itemsets from high speed transactional data streams[ C]// Proceedings of the Thirtieth International Conference on Very Large Data Bases, August 31-September 3 2004. Toronto, Canada: Morgan Kaufmann, 2004: 204-215.

同被引文献19

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部