期刊文献+

支持向量机在模式识别和回归模型中的应用 被引量:2

The Application of Support Vector Machines in Pattern Regcognition and Regression Models
下载PDF
导出
摘要 支持向量机是一种新型机器学习方法,能较好地解决小样本、非线性、高维数和局部极小点等实际问题,对未来样本有较好的泛化能力,已成为当前机器学习界的研究热点。本文介绍了支持向量机的数学理论基础及其研究现状,并介绍了支持向量机实用算法的研究情况,指出了支持向量机的局限性和未来的研究方向。 Sopport Vector Machines (SVM)are a new kind of novel machine learning methods, based on statistical learning theory,which have become the hotspot of machine learning because of their excellent learning performance. The method of support vector machines has been developed for solving classificationand regression problems. In this paper,the mathemati- cal foundation of SVM and the status in quo are introduced,and several applied algorithms are presented. Some limitations and future research issues are also discussed.
机构地区 河南科技学院
出处 《河南科技学院学报》 2007年第4期89-92,共4页 Journal of Henan Institute of Science and Technology(Natural Science Edition)
基金 河南省科技发展计划项目(0624420016) 河南省教育厅科技攻关项目(2007150018)
关键词 机器学习 统计学习理论 支持向量机 模式识别 machine learning statistical learning theory support vector machines pattern regeognition
  • 相关文献

参考文献3

二级参考文献43

  • 1李响,刘征涛,沈萍萍,孔志明.卤代酚类物质对抗氧化酶活性的影响研究及构效分析[J].环境科学学报,2004,24(5):900-904. 被引量:14
  • 2孙立力,李志良.分子电性距离矢量(MEDV)用于醇的分子结构表达和物理性质预测[J].化工学报,2005,56(2):203-208. 被引量:11
  • 3[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152.
  • 4[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 5[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161.
  • 6[4]Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing [A]. Advances in Neural Information Processing Systems [ C ].Cambridge: MIT Press, 1997. 281-287.
  • 7[5]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 8[6]Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 9[7]Vapnik V N. The Nature of Statistical Learning Theory [M]. 2nd edition. New York: SpringerVerlag, 1999.
  • 10[8]Platt J. Fast training of support vector machines using sequential minimal optimization [ A ]. Advances in Kernel Methods - Support Vector Learning [C].Cambridge: MIT Press, 1999. 185-208.

共引文献169

同被引文献56

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部