期刊文献+

铁掺杂TiO_2纳米管阵列对不锈钢的光生阴极保护 被引量:26

The Fe-doped TiO_2 Nanotube Arrays as a Photoanode for Cathodic Protection of Stainless Steel
下载PDF
导出
摘要 在含FeSO4的HF、H2SO4/HF、NaF/Na2SO4溶液中,通过电化学阳极氧化直接在纯钛表面制备Fe掺杂的TiO2(Fe-TiO2)纳米管阵列.应用X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外-可见吸收光谱(UV-Vis)、X射线光电子能谱(XPS)等手段对纳米管阵列的结构、形貌及化学组成进行表征.利用光电化学测量研究Fe-TiO2纳米管阵列在不同波长范围内的光电响应特性和光生阴极保护行为.考察了温度、时间、掺杂含量等参数对TiO2纳米管阵列的几何尺寸、形貌和光电性能的影响.结果表明,Fe掺杂可有效减缓TiO2纳米管阵列载流子的复合,窄化TiO2带隙宽度,Fe-TiO2在410-650nm范围显示强吸收,并使光谱响应扩展到波长大于400nm的可见光区.实验结果还表明,Fe-TiO2纳米管阵列对316不锈钢(316L)具有良好的光生阴极保护作用,暗态下阴极保护作用可继续维持. A highly ordered Fe-doped TiO2 nanotube layer was fabricated by potentiostatic anodization of pure titanium in fluorinated electrolyte solutions containing iron ions.The structure and composition of the as-prepared TiO2 nanotubes were characterized by SEM,XRD,UV-Vis,and XPS.The effects of temperature,time,dopant content on the morphologies,structure and photochemical properties of the TiO2 nanotube arrays were investigated systemically.The performances of photogenerated cathodic protection and the photoelectrochemical response for the Fe-doped TiO2 nanotube layers under illumination and dark conditions were evaluated through the electrochemical measurements.It was found that Fe ions in the TiO2 nanotube arrays could suppress the recombination of photogenerated hole-electron.The Fe-doped TiO2 nanotubes showed a stronger absorption in the 410-650 nm range.The open-circuit potentials of 316L SS(stainless steel)coupled with the Fe-doped TiO2 nanotubes layers shifted negatively under visible light irradiation(〉400 nm),and maintained negatively for a period even in dark condition.It was indicated that the Fe-doped TiO2 nanotubes layers were able to create effectively a photogenerated cathodic protection for metals under regular sunlight conditions.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2007年第12期1886-1892,共7页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(50571085) 国家科技部基础研究资助项目(2005CCA06700)资助
关键词 阳极氧化 氧化钛纳米管 FE掺杂 光生阴极保护 可见光 机理 Anodic oxidation TiO2 nanotube Fe-doped Photocathodic protection Visible-light Mechanism
  • 相关文献

参考文献42

  • 1Fujishima, A.; Honda, K. Nature, 1972, 238:37.
  • 2Choi, W.; Hong, S. J.; Chang, Y. S.; Cho, Y. Environ. Sci. Technol., 2000, 34:3810.
  • 3Wang, T. M.; Wang, H. Y.; Xu, P.; Zhao, X. C.; Liu, Y. L.; Chao, S. Thin Solid Films, 1998, 334:103.
  • 4Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mtiller, E.; Liska, P.; Vlachopoulos, N.; Gruatzel, M. J. Am. Chem. Soc., 1993, 115:6382.
  • 5Hager, H. E.; Belko, J. A. Sens. Actuators, 1985, 8:161.
  • 6Takeuchi, T. Sens. Actuators, 1988, 14:109.
  • 7Kajihara, K.; Yao, T. Phys. Chem. Chem. Phys., 1999, 1:1979.
  • 8Subasri, R.; Shinohara, T. Electrochem. Commun., 2003, 5:897.
  • 9Subasri, R.; Deshpande, S,; Seal, S.; Shinohara, T. Electrochem. Solid-State Lett., 2006, 9:B1.
  • 10Tatsuma, T.; Saitoh, S.; Ohko, Y.; Fujishima, A. Chem. Mater., 2001, 13:2838.

二级参考文献51

共引文献237

同被引文献596

引证文献26

二级引证文献184

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部