期刊文献+

可选子密钥的门限多秘密共享方案 被引量:4

Self-selecting share threshold multi-secret sharing scheme
下载PDF
导出
摘要 现有的门限多秘密共享方案中,成员的子密钥是由庄家分发的,可能会导致庄家分发时的主动欺骗或无意欺骗,并且子密钥只能使用一次。针对这两个问题,基于离散对数求解的困难性提出了一个新的门限多秘密共享方案。该方案允许成员自主选择子密钥,子密钥可以重复使用,且不需要执行交互协议就能检测出庄家和参与者的欺诈。与现有方案相比,该方案的可行性更强、成员自主权更大,数据利用率更高。 In the present threshold multi-secret sharing schemes, the dealer distributes share to every shareholder, which could lead to the dealer's intentional or unintentional cheating in shadow distribution, and the shareholder can only use share once. To solve these two problems, a new multi-secret sharing scheme based on the intractability of the discrete logarithm was presented. In this scheme, every shareholder's share is selected by himself (or herself), and the share can be reused, in addition, the cheating of the dealer and the cheating between shareholders can be detected without using interactive protocol. Compared with the existing schemes, the proposed scheme is more feasible, and the shareholders take more initiatives. Besides, the utilization ratio of the data is higher.
出处 《计算机应用》 CSCD 北大核心 2007年第9期2187-2188,2199,共3页 journal of Computer Applications
关键词 多秘密共享 (T N)门限方案 LAGRANGE插值 multi-secret sharing ( t, n ) threshold scheme Lagrange interpolation
  • 相关文献

参考文献10

  • 1SHAMIR A.How to share a secret[J].Communications of the ACM,1979,22(11):612-613.
  • 2BLAKLEY G R.Safeguarding cryptographic keys[C]// Proceedings AFIPS 1979 National Computer Conference.New York:AFIPS,1979:313-317.
  • 3HWANG S J,CHANG C C,YANG W P.An efficient dynamic threshold scheme[J].IEICE Transactions on Information and Systems,1996,E79-D(7):936-942.
  • 4申一頔,刘焕平.可选子密钥的秘密共享方案[J].哈尔滨师范大学自然科学学报,2006,22(1):54-57. 被引量:4
  • 5CHIEN H Y,JAN J K,TSENG Y M.A practical(t,n)multi-secret sharing scheme[J].IEICE Transaction on Fundamentals,2000,E83-A(12):2762-2765.
  • 6HARN L.Efficient sharing (broadcasting) of multiple secrets[J].IEE Computers and Digital Techniques,1995,142(3):237-240.
  • 7YANG C C,CHANG T Y,HWANG M S.A (t,n) multisecret sharing scheme[J].Applied Mathematics and Computation,2004,151(2):483-490.
  • 8HE W H,WU T S.Comment on Lin-wu (t,n) threshold verifiable multisecret sharing scheme[J].IEE Computers and Digital Techniques,2001,148(3):139-141.
  • 9许春香,肖国镇.门限多重秘密共享方案[J].电子学报,2004,32(10):1688-1689. 被引量:41
  • 10GENNARO R,JARECKI S,KRAWCZYK H.et al.Robust and efficient sharing of RSA functions[C]//Advanced in Cryptology-CRYPTO'96 Proceedings.Berlin:Springer-Verlag,1996:157-172.

二级参考文献17

  • 1A Shamir.How to share a secret[J].Communications of the ACM,1979,22(11):612-613.
  • 2H.-Y.Lin,Harn L.A generalized secret sharing scheme with cheater detection[A].Advances in Cryptology-ASIACRYPT'91 Proceedings[C],Berlin:Springer-Verlag,1993.149-158.
  • 3M Carpentieri.A perfect threshold secret sharing scheme to identify cheaters[J].Designs,Codes and Cryptography,1995,5(3):183-197.
  • 4J Rifa-Coma.How to avoid the cheaters succeeding in the key sharing scheme[J].Designs,Codes and cryptography,1993,3(3):221-228.
  • 5E F Brickell,D R Stinson.The detection of cheaters in threshold scheme[A].Advances in Cryptology-CRYPTO'88[C],Berlin:Springer-Verlag,1988.564-577.
  • 6L Harn,H Lin.An l-span generalized secret sharing scheme[A].Advances in Cryptology-CRYPTO'92[C].Berlin:Springer-Verlag,1992.558-565.
  • 7L Harn.Efficient sharing (Broadcasting) of multiple secrets,IEE Proc.-Comput.Digit.Tech.1995,142(3):237-240.
  • 8L Chen,D Gollmann,C J Mitchell,P Wild.Secret sharing with reusable polynomials[A].The Second Australasian Conference on Information Security and Privacy-ACISP'97[C].Berlin:Springer-Verlag,1997.183-192.
  • 9GENNARO R.,JARECKI S.,KRAWCZYK H.et al.Robust and efficient sharing of RSA functions[A].Advanced in Cryptology-- CRYPTO'96 Proceedings[C].Berlin:Springer Verlag,1996.157-172.
  • 10Shamir A.,How to share asecret,Commun.ACM,1979,22(11),612~613.

共引文献43

同被引文献35

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部