期刊文献+

一种改进的自适应遗传算法求解专家分配问题 被引量:2

Improved adaptive genetic algorithm for expert assignment problem
下载PDF
导出
摘要 基金项目管理中,专家分配问题的研究具有很现实的意义。在解决专家分配问题上做过一些基础性的工作,提出了使用遗传算法及一种信息素指导变异的新算法求解该问题。实验证明,遗传算法是一种可行的途径,并且信息素指导下的启发式变异操作,可以加速算法向最优解搜索。但是,这两种方法都存在局部搜索能力差的问题,在算法运行的中后期会出现大量的冗余迭代。鉴于此,提出一种信息素指导下的自适应变异方法求解专家分配问题。实验证明,新算法具有更强的收敛能力和局部搜索能力。 Expert assignment is chief and basic work of project review in project management. So it is significant to research how to solve expert assignment problem (EAP). In previous papers, we established the mathematical model of expert assignment problem, and proposed genetic algorithm and GA using heuristic mutation guide by pheromone to solve EAP. Though it has been proven they are effective ways for EAP, they have disadvantages of massive redundancy iteration in later period and inferior local search ability. In this paper a modification of GA which introduces adaptive mutation is proposed to solve EAP. The simulation results show that the new algorithm improves the ability of local search and generates solutions of better quality.
出处 《计算机应用》 CSCD 北大核心 2007年第9期2276-2278,2293,共4页 journal of Computer Applications
关键词 专家分配 遗传算法 蚂蚁算法 自适应变异 信息素 expert assignment genetic algorithm ant algorithm adaptive mutation pheromone
  • 相关文献

参考文献7

二级参考文献26

  • 1沙智明,郝育黔,郝玉山,杨以涵.基于改进自适应遗传算法的电力系统相量测量装置安装地点选择优化[J].电工技术学报,2004,19(8):107-112. 被引量:15
  • 2[1] ZBIGNIEW MICHALEWICZ, CEZARY Z J, JACEK B K. A modified genetic algorithm for optimal control problems[J]. Computers Math Applic, 1992, 23(2): 83-94.
  • 3[2] JIM ANTONISSE. A new interpretation of schema notation that overturns the binary encoding constraint//. Proc 3rd Int Conf Genetic Algorithms[C]. 1989.
  • 4[3] GREFENSTETTE J J, BAKER J E. How genetic algorithms work: a critical look at lmplicit parallelism//. Proc 3rd nt Conf Genetic Algorithms[C]. 1989.
  • 5[4] DARRELL WHITLEY. The genitor algorithm and selection pressure: why rank-based allocation of reproductive trials is best//. Proc 3rd Int Conf Genetic Algorithms[C]. 1989.
  • 6[5] SRINIVAS M, PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans on System Man and Cybernetics, 1994, 24(4): 656-667.
  • 7吴述尧.同行评价方法论[M].北京:科学出版社,1996..
  • 8Office of Extramural Research NIH Instructions to Reviewers for Evaluating Research Involving Human Subjects in Grant and Cooperative Agreement Applications[Z],25/8,2001.
  • 9Terrence Hoffman.The meanings of competency [J].Journal of European Industrial Training,23/6,1999:275-285.
  • 10J H Holland.Adaptation in Natural Artificial Systems[M].MIT Press,1975

共引文献174

同被引文献7

  • 1朱玉祥,苗春生,孙承佼.基于遗传算法的试题库智能组卷系统研究[J].南京气象学院学报,2006,29(2):282-285. 被引量:13
  • 2曾一,冉忠,郭永林.试题库中自动组卷的算法及试卷测评策略[J].计算机工程与设计,2006,27(16):3024-3027. 被引量:40
  • 3Beasley,J.E.and P.C.Chu,A genetie algorithm for the set covering problem,European Journal of Operational Research,vol.94,pp.329-404,1996.
  • 4玄光男,程润伟遗传算法与工程优化[M].北京:清华大学出版社,2005.
  • 5刘晓华.JSP应用开发详解[M].电子工业大学出版社,2008,第3版.
  • 6[美](Vasani.V.1范斯瓦尼,周绪,管丽娜,白海波.SQLServer2000中文版入门提高[M].北京:清华大学出版社,:2004.
  • 7刘勇,康立山,等.非数值并行算法-遗传算法[M].北京:科学出版社,2003.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部