期刊文献+

DOM驱动型智能体在计算任务中的研究与实现

Study and implement on DOM-driven Agent in the intelligent calculation tasks
下载PDF
导出
摘要 提出了一种能够实现复杂计算任务的以DOM驱动模式为基础的智能体实现方法。在复杂计算过程中,计算模型的调整和修改是一个烦琐的任务,利用智能体能自动完成此任务,弥补其中的不足。基本思路是根据智能体的抽象概念逐步实现智能体各基本结构,并采用XML文档存储智能体的组成部分和通信部分,再利用DOM这种驱动模式来读取XML的内容,利用Script组件解释该内容,设计出一个将XML技术与智能体相结合的计算架构。该智能体最后应用在森林生长仿真计算任务中,并取得了较佳预期效果。 DOM-driven model-based Agent method for implementation of complex calculation was proposed. In some complicated calculation process, there is a need to join some calculation tasks, or a need to adjust and update some calculation tasks for the external environment. In many cases the intelligent calculation can make up for the lack of general calculation. Firstly, basic structure of the Agent was realized progressive in accordance with the abstraction of common Agent. Then storage components and communication segments of the Agent was built by XML document. Here DOM-driven model was used to read the contents of XML. Microsoft Script component was used to translate Agent itself and its actions into local machine code. Then a new framework of a combination of XML and Agent of calculation was created. Finally, as an example, the application of the Agent for calculating forest vegetation simulation gains a desired result.
出处 《计算机应用》 CSCD 北大核心 2007年第9期2327-2329,2333,共4页 journal of Computer Applications
基金 国家林业局948项目(2005-4-02)
关键词 文档对象模型 智能体 XML 森林植被模型 脚本引擎 Document Object Model (DOM) Agent XML Forest Vegetation Simulator (FVS) script engine
  • 相关文献

参考文献7

二级参考文献31

  • 1Apnik V V. The Nature of Statistical Learning Theory. New York: Springer-Verlag Press, 1995.
  • 2Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Machine learning, 1997, 29(2-3): 131-163.
  • 3Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 1299-1319.
  • 4Rumelhart D E, Hinton G E, Williams R J.Learning internal representations by error propagation, parallel distributed processing:Explorations in the Microstructure of cognition,Vol I: Foundation. Cambridge, Massachusetts:MIT Press, 1986.
  • 5Zhan-Li Sun, D S Huang, Yiu-Ming Cheung.Extracting nonlinear features for multispectral images by FCMC and KPCA. Digital Signal Processing, 2005, 15(4): 331-346.
  • 6D S Huang, Horace H S Ip, Zheru Chi. A neural root finder of polynomials based on root moments.Neural Computation, 2004, 16(8):1721-1762.
  • 7D S Huang. A constructive approach for finding arbitrary roots of polynomials by neural networks,IEEE Transactions on Neural Networks, 2004, 15(2): 477-491.
  • 8Werbos P J. Beyond regression: New tools for predictions and analysis in the behavioral science.Ph D Thesis, Harvard University, 1974.
  • 9Xu L, Krzyzak A, Oia E. Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Trans. on Neural Networks, 1993,(4): 636-648.
  • 10[1]林尧瑞,马少平.人工智能导论[M].北京:清华大学出版社.2004.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部