期刊文献+

采用图像融合技术的多模式人脸识别 被引量:10

Multimodal Face Recognition Based on Images Fusion
下载PDF
导出
摘要 利用图像融合技术实现了基于可见光图像和红外热图像相结合的多模式人脸识别,研究了两种图像在像素级和特征级的融合方法。在像素级,提出了基于小波分解的图像融合方法,实现了两种图像的有效融合。在特征级,采用分别提取两种识别方法中具有较好分类效果的前50%的特征进行特征级的融合。实验表明,经像素级和特征级融合后,识别准确率都较单一图像有很大程度的提高,并且特征级的融合效果明显优于像素级的融合。因此,基于图像融合技术的多模式人脸识别,有效的增加了图像的信息量,是提高人脸识别准确率的有效途径之一。 A multimodal face recognition technology based on visual and infrared images fusion is introduced, and fusion methods on pixel level and feature level are discussed. On pixel level, image fusion based on wavelet decomposition is used to effectively combine pixels of visual and infrared images to form new images. On feature level, a new feature extraction method is proposed by ranking and extracting top 50% of feature vectors. The recognition experiment shows that correct recognition rate (CRR) is improved by using pixel fusion and feature fusion, compared with that using single type images. Further more, the feature fusion of images is obviously superior to the pixel fusion. In conclusion, multimodal face recognition based on image fusion combines information from images of two types, and become to effective method for increasing CRR.
出处 《工程图学学报》 CSCD 北大核心 2007年第6期72-78,共7页 Journal of Engineering Graphics
关键词 计算机应用 多模式人脸识别 图像融合 红外热图像 可见光图像 小波变换 computer application multimodal face recognition image fusion infraredimage visual image wavelet translation
  • 相关文献

参考文献7

  • 1Phillips P J, Flynn P J, Scruggs T. Overview of the face recognition grand challenge [A]. In: IEEE Conference on Computer Vision and Pattern Recognition [C]. 2005 947-954.
  • 2Saurabh Singh, Aglika Gyaourova, George Bebis, et al. Infrared and visible image fusion for face recognition [A]. In: Proceedings of the SPIE Defense and Security Symposium [C]. 2004. 585-596.
  • 3Chen Xuerong, Jing Zhongliang, Li Zhenhua. Image fusion for face recognition [A]. In: 7th International Conference on Information Fusion [C]. 2005.25-28.
  • 4Li H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform [J]. Graphical Models and Image Process, 1995, 57(3): 235-245.
  • 5Prokoski F. History, current status, and future of infrared identification [A]. In: IEEE Workshop on Computer Vision Beyond the Visible Spectrum [C]. 2000. 5-14.
  • 6Wilder J, Phillips P J, Jiang C H, et al. Comparison of visible and infra-red imagery for face recognition [A]. In: 2nd Int. Conf: on Automatic Face & Gesture Recognition [C]. Killington, 1996. 182-187.
  • 7刘贵喜,杨万海.基于小波分解的图像融合方法及性能评价[J].自动化学报,2002,28(6):927-934. 被引量:136

二级参考文献7

  • 1[1]Luo R C, Kay M G. Multisensor Integration And Fusion For Intelligent Machines And Systems. New Jersey: Ablex Publishing Corporation, 1995. 1~25
  • 2[2]Varshney P K. Multisensor data fusion. Electronics & Communication Engineering Journal, 1997,9(6):245~253
  • 3[3]Yocky D A. Image merging and data fusion by means of the discrete two-dimensional wavelet transform. Journal of Optical Society of America, 1995, 12(9):1834~1841
  • 4[4]Nunez J, Otazu X, Fors O, Prades A, Pala V, Arbiol R. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(3):1204~1211
  • 5[5]Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7):674~693
  • 6[6]Mallat S G. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998.302~310
  • 7[7]Campbell F W, Robson J. Application of Fourier analysis to the visibility of gratings. Journal of Physiology, 1968,197:551~556

共引文献135

同被引文献107

引证文献10

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部